On the microstructure and tensile behaviour of nanostructured NiTi alloy produced by electroplastic rolling

J. V. Tilak Kumar, S. Jayaprakasam, V. S. Senthil Kumar, K. A. Padmanabhan, A. Frolova, V. Stolyarov show affiliations and emails
Received 16 January 2022; Accepted 09 March 2022;
Citation: J. V. Tilak Kumar, S. Jayaprakasam, V. S. Senthil Kumar , K. A. Padmanabhan, A. Frolova, V. Stolyarov. On the microstructure and tensile behaviour of nanostructured NiTi alloy produced by electroplastic rolling. Lett. Mater., 2022, 12(2) 83-88
BibTex   https://doi.org/10.22226/2410-3535-2022-2-83-88


Nanostructured NiTi and its tensile behaviour.Electroplastic rolling was employed to produce nanostructured (NS), near-equiatomic NiTi alloy from a coarse grained NiTi nugget (ingot), which was produced using vacuum induction melting, followed by quenching in water from a temperature of 800°C. The microstructure of NS NiTi was characterized using X-ray Diffraction (XRD) and transmission electron microscopy (TEM). XRD analysis revealed that the NS NiTi is predominantly martensitic at room temperature, with less than ≈10 % of the austenite phase. The NS NiTi alloy has an average grain size of ≈36 nm. TEM investigation confirmed the presence of grains that are less than 10 nm in size and no amorphous zones were detected. The NS martensitic NiTi alloy specimens were tested in tension at two different strain rates (10−2 and 10−1 s−1). In contrast to a stress-strain profile expected in a martensitic NiTi alloy, the stress-strain curves show conventional tensile behaviour. The observed UTS was high, around ≈1800 MPa, with a less than usual elongation to failure of ≈6 %. The presence of dimples on the fracture surfaces can be seen in scanning electron microscopy (SEM) images, which is indicative of ductile fracture. The role of grain size in the observed deformation and fracture features is also discussed.

References (45)

1. W. J. Buehler, F. E. Wang. Ocean Eng. 1, 105 (1968). Crossref
2. K. Otsuka, T. Kakeshita. MRS Bull. 27. 91 (2002). Crossref
3. A. N. Bucsek, H. M. Paranjape, A. P. Stebner. Shap. Mem. Superelasticity. 2, 264 (2016). Crossref
4. S. A. Padula, J. Benzing, C. M. Creager. Radially stiffened shape memory alloy tire. US Patent No. 10427461. 1 October 2019.
5. S. C. Kwon, S. H. Jeon, H. U. Oh. Cryogenics. 67, 19 (2015). Crossref
6. W. Huang, S. Pellegrino, D. P. Bashford. Shape memory alloy actuators for deployable structures. In: Proc. Spacecraft Structures. Materials and Mechanical Testing. ESA SP - 386, Noordwijk (1996) p. 53.
7. S. Mahdis, C. Youngjae. Acta Biomater. 21, 20 (2015). Crossref
8. J. W. Mwangi, L. T. Nguyen, V. D. Bui, T. Berger, H. Zeidler, A. Schubert. J. Manuf. Process. 38, 355 (2019). Crossref
9. M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia. Prog. Mater. Sci. 54, 397 (2009). Crossref
10. S. Daly, G. Ravichandran, K. Bhattacharya. Acta Mater. 55, 3593 (2007). Crossref
11. A. L. Gloanec, G. Bilotta, M. Gerland. Mater. Sci. Eng. A. 564 (1), 351 (2013). Crossref
12. A. Misochenko, J. V. Tilak Kumar, S. Jayaprakasam, K. A. Padmanabhan, V. Stolyarov. Defect Diffus. Forum. 385, 169 (2018). Crossref
13. E. Ryklina, K. Polyakova, S. Prokoshkin. Shap. Mem. Superelasticity. 6, 157 (2020). Crossref
14. V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, T. C. Lowe, Y. T. Zhu. Mater. Sci. Eng. A. 410 - 411, 386 (2005). Crossref
15. A. V. Sergueeva, C. Song, R. Z. Valiev, A. K. Mukherjee. Mater. Sci. Eng. A. 339, 159 (2003). Crossref
16. V. Brailovski, S. D. Prokoshkin, I. Y. Khmelevskaya, K. E. Inaekyan, V. Demers, S. V. Dobatkin, E. V. Tatyanin. Mater. Trans. 47, 795 (2006). Crossref
17. S. D. Prokoshkin, V. Brailovski, K. E. Inaekyan, V. Demers, I. Y. Khmelevskaya, S. V. Dobatkin, E. V. Tatyanin. Mater. Sci. Eng. A. 481 - 482, 114 (2008). Crossref
18. V. Demers, V. Brailovski, S. D. Prokoshkin, K. E. Inaekyan. Mater. Sci. Eng. A. 513 - 514, 185 (2009). Crossref
19. V. Brailovski, S. D. Prokoshkin, K. Inaekyana, V. Demers. J. Alloys Compd. 509, 2066 (2011). Crossref
20. E. O. Nasakina, M. A. Sudarchikova, K. V. Sergienko, S. V. Konushkin, M. A. Sevost’yanov. Nanomaterials. 9, 1569 (2019). Crossref
21. S. Nagaraja, S. J. L. Sullivan, P. R. Stafford, A. D. Lucas, E. Malkin. Acta Biomater. 72, 424 (2018). Crossref
22. S. J. L. Sullivan, M. L. Dreher, J. Zheng, L. Chen, D. Madamba, K. Miyashiro, C. Trépanier, S. Nagaraja. Shap. Mem. Superelasticity. 1, 319 (2015). Crossref
23. S. Aksöz. Arab. J. Sci. Eng. 42, 2573 (2017). Crossref
24. X. Li, H. Chen, W. Guo, Y. Guan, Z. Wang, Q. Zeng, X. Wang. Intermetallics. 131, 107114 (2021). Crossref
25. R. Zhu, G. Tang, S. Shi, M. Fu. J. Mater. Process. Technol. 213, 30 (2013). Crossref
26. O. A. Troitskii. JETP Lett. 10, 18 (1969).
27. M. J. Kim, S. Yoon, S. Park, H. J. Jeong, J. W. Park, K. Kim, J. Jo, T. Heo, S. T. Hong, S. H. Cho, Y. K. Kwon, I. S. Choi, M. Kim, H. N. Han. Appl. Mater. Today. 21, 100874 (2020). Crossref
28. T. A. Perkins, T. J. Kronenberger, J. T. Roth. Transactions of the ASME. 129, 84 (2007). Crossref
29. S. D. Prokoshkin, V. V. Stolyarov, A. V. Korotitskii, K. E. Inaekyan, E. S. Danilov, I. Y. Khmelevskaya, A. M. Glezer, S. Y. Makushev, U. K. Ugurchiev. Phys. Met. Metallogr. 108, 616 (2009). Crossref
30. J. V. Tilak Kumar, S. Jayaprakasam, K. A. Padmanabhan, A. Misochenko, V. Stolyarov. Mater. Charact. 149, 47 (2019). Crossref
31. R. Zhu, G. Tang. Mater. Sci. Technol. 33, 546 (2017). Crossref
32. A. Monshi, M. Foroughi, M. Monshi. World J. Nano Sci. Eng. 2 (3), 154 (2012). Crossref
33. G. K. Williamson, W. H. Hall. Acta Metall. 1, 22 (1953). Crossref
34. A. K. Zak, W. H. A. Majid, M. E. Abrishami, R. Yousefi. Solid State Sci. 13, 251 (2011). Crossref
35. S. B. Qadri, J. P. Yang, E. F. Skelton, B. R. Ratna. Appl. Phys. Lett. 70, 1020 (1997). Crossref
36. V. M. Anandakumar, M. A. Khadar. Phys. Status Solidi A. 205, 2666 (2008). Crossref
37. B. P. Jacob, S. Thankachan, S. Xavier, E. M. Mohammed. Phys. Scr. 84, 045702 (2011). Crossref
38. S. Dubinskiy, S. Prokoshkin, V. Sheremetyev, A. Konopatsky, A. Korotitskiy, N. Tabachkova, E. Blinova, A. Glezer, V. Brailovski. J. Alloys Compd. 858, 157733 (2021). Crossref
39. S. Prokoshkin, S. Dubinskiy, A. Korotitskiy, A. Konopatsky, V. Sheremetyev, I. Shchetinin, A. Glezer, V. Brailovski. J. Alloys Compd. 779, 667 (2019). Crossref
40. E. Polatidis, M. Šmíd, I. Kuběnaa, W. N. Hsu, G. Laplanche, H. V. Swygenhoven. Mater. Des. 191, 108622 (2020). Crossref
41. T. Waitz, T. Antretter, F. D. Fischer, N. K. Simhad, H. P. Karnthaler. J. Mech. Phys. Solids. 55, 419 (2007). Crossref
42. K. L. Ng, Q. P. Sun. Mech. Mater. 38, 41 (2006). Crossref
43. Y. Liu, Z. Xie. In: Progress in Smart Materials and Structures (ed by P. L. Reece). Nova Science Publishers (2007) pp. 29 - 65.
44. I. Karaman, H. E. Karaca, H. J. Maier, Z. P. Luo. Metall. Mater. Trans. A. 34A, 2527 (2003). Crossref
45. J. V. Humbeeck. J. Phys. IV France. 01 (C4), 189 (1991). Crossref