On a unique constitutive equation for steady state isotropic optimal structural superplastic deformation in all classes of materials

K. R. Harisankar, S. Sripathi ORCID logo , K.A. Padmanabhan show affiliations and emails
Received 08 October 2021; Accepted 02 December 2021;
Citation: K. R. Harisankar, S. Sripathi, K.A. Padmanabhan. On a unique constitutive equation for steady state isotropic optimal structural superplastic deformation in all classes of materials. Lett. Mater., 2022, 12(1) 5-14
BibTex   https://doi.org/10.22226/2410-3535-2022-1-5-14

Abstract

Steady state isotropic optimal superplastic deformation in 175 materials systems of different classes studied can be represented by the equation 8 in the main textStructural Superplasticity in materials has been reported in so many different classes of materials that there is a case to state that this phenomenon is (near)-ubiquitous. Yet, many authors have proposed different rate controlling processes for different superplastic materials. Such an approach goes against Newton’s (Principia, Part 3) axiom that “to the same natural effects we must, so far as possible, assign the same causes”. In contrast, a viewpoint also exists that steady state, isotropic, optimal structural superplastic deformation in different classes of materials can be attributed to a grain-boundary-sliding-rate-controlled process that develops to a mesoscopic scale (defined to be of the order of a grain diameter or more). If this were the case, it should be possible to generate in properly normalized spaces material-independent “universal” curves (2D) and surfaces (3D) for the relationships among the different experimental variables/parameters like stress, strain rate, strain rate sensitivity index, temperature, real activation energy for the rate controlling process and viscosity. In this paper, by a careful analysis of experimental data concerning 175 states of superplastic materials of different classes it is demonstrated that such universal curves and surfaces indeed exist. The existence of such universal curves and surfaces that describe the phenomenology of steady state, isotropic, optimal structural superplastic deformation in different classes of materials in terms of unique equations reinforces the view experimentally arrived at that a unique physical mechanism of deformation is responsible for the near-ubiquitous phenomenon of steady state, isotropic, optimal structural superplasticity.

References (89)

1. K. A. Padmanabhan, S. B. Prabu, R. R. Mulyukov, A. Nazarov, R. M. Imayev, S. G. Chowdhury. Superplastic flow: common basis for a ubiquitous phenomenon. Springer-Verlag, Berlin Heidelberg, New York (2018). Crossref
2. K. A. Padmanabhan, G. J. Davies. Superplasticity: mechanical and structural aspects, environmental effects, fundamentals and applications. Springer-Verlag, Berlin Heidelberg, New York (1980). Crossref
3. T. G. Nieh, J. Wadsworth, O. D. Sherby. Superplasticity in metals and ceramics. Cambridge University Press, UK (1997). Crossref
4. O. A. Kaibyshev. Superplasticity of alloys, intermetallides and ceramics. Springer-Verlag, Berlin Heidelberg, New-York (1992). Crossref
5. M. Jime’nez-Melendo, A. Domi’nguez-Rodri’guez, M. Holgado-Salado. Int. J. Plast. 17, 341 (2001). Crossref
6. J. N. Wang, Y. Wang. Int. J. Plast. 22, 1530 (2006). Crossref
7. M. Mabuchi, K. Higashi. Int. J. Plast. 17, 399 (2001). Crossref
8. R. Boissière, J. J. Blandin, L. Salvo. J. Eng. Mater. Technol. 130 (2), 1 (2008). Crossref
9. K. M. Liew, H. Tan, M. J. Tan. J. Eng. Mater. Technol. 125 (3), 256 (2003). Crossref
10. H. Masuda, E. Sato. Acta Mater. 197, 235 (2000). Crossref
11. K. A. Padmanabhan. Scr. Metall. 7, 137 (1973). Crossref
12. K. A. Padmanabhan. Mater. Sci. Eng. 29, 1 (1977). Crossref
13. K. A. Padmanabhan, J. Schlipf. Mater. Sci. Technol. 12, 391 (1996). Crossref
14. K. A. Padmanabhan, H. Gleiter. Mater. Sci. Eng. A. 381, 28 (2004). Crossref
15. K. A. Padmanabhan, G. P. Dinda, H. Hahn, H. Gleiter. Mater. Sci. Eng. A. 452, 462 (2007). Crossref
16. K. A. Padmanabhan. J. Mater. Sci. 44, 2226 (2009). Crossref
17. K. A. Padmanabhan, M. I. R. Basariya. Int. J. Mater. Res. 100, 1543 (2009). Crossref
18. K. A. Padmanabhan, M. I. R. Basariya. Mater. Sci. Eng. A. 527, 225 (2009). Crossref
19. K. A. Padmanabhan, H. Gleiter. Curr. Opin. Solid State Mater. Sci. 16 (5), 243 (2012). Crossref
20. K. A. Padmanabhan, M. I. R. Basariya. Mater. Sci. Eng. A. 744, 704 (2019). Crossref
21. T. A. Venkatesh, S. S. Bhattacharya, K. A. Padmanabhan, J. Schlipf. Mater. Sci. Technol. 12, 635 (1996). Crossref
22. M. S. Mohebbi, A. Akbarzadeh. Int. J. Plast. 90, 167 (2017). Crossref
23. N. C. Admal, G. Po, J. Marian. Int. J. Plast. 106, 1 (2018). Crossref
24. T. Cheng, Y. Wen, J. A. Hawk. Int. J. Plast. 114, 106 (2018). Crossref
25. I. A. Ovid’ko, A. G. Sheinerman. Int. J. Plast. 96, 227 (2017). Crossref
26. D. M. Owen, A. H. Chokshi. Int. J. Plast. 17, 353 (2001). Crossref
27. M. Lagos, H. Duque. Int. J. Plast. 17 (3), 369 (2001). Crossref
28. M. F. Horstemeyer, D. J. Bammann. Int. J. Plast. 25 (9), 1310 (2010). Crossref
29. F. P. E. Dunne. Int. J. Plast. 14 (4-5), 413 (1998). Crossref
30. M. A. Khaleel, H. M. Zbib, E. A. Nyberg. Int. J. Plast. 17, 277 (2001). Crossref
31. K. A. Padmanabhan, R. A. Vasin, F. U. Enikeev. Superplastic Flow: Phenomenology and Mechanics. Springer Verlag, New York (2001). Crossref
32. R. A. Vasin, V. K. Berdin, R. M. Kashaev. Strength Mater. 33, 509 (2001). Crossref
33. A. A. Sirenko, M. A. Murzinova, F. U. Enikeev. J. Mater. Sci. Lett. 14, 773 (1995). Crossref
34. F. U. Enikeev, K. A. Padmanabhan, S. S. Bhattacharya. Mater. Sci. Technol. 15, 673 (1999). Crossref
35. Y. Kawamura, T. Nakamura, A. Inoue, T. Masumoto. Mater. Trans. JIM. 40, 794 (1999). Crossref
36. F. K. Abu-Farha, M. K. Khraisheh. J. Eng. Mater. Technol. 127 (1), 159 (2005). Crossref
37. K. A. Padmanabhan, J. Leuthold, G. Wilde, S. S. Bhattacharya. Mech. Mater. 91, 177 (2015). Crossref
38. I. C. Trelea. Inf. Proc. Lett. 85, 317 (2003). Crossref
39. Pyswarm. Accessed: November, (2019). https://pythonhosted.org/pyswarm/.
40. U. Betz, K. A. Padmanabhan, H. Hahn. J. Mater. Sci. 36, 5811 (2001). Crossref
41. H. Hahn, K. A. Padmanabhan. Philos. Mag. B. 76, 559 (1997). Crossref
42. H. J. Frost, M. F. Ashby. Deformation mechanism maps.Pergamon Press, Oxford (1982).
43. F. A. Mohamed, M. M. Ahmed, T. G. Langdon. Metall. Trans. A. 8, 933 (1977). Crossref
44. N. Kumar, K. S. Raman, D. H. Sastry, E. A. Little. J. Mater. Sci. 25, 753 (1990). Crossref
45. D. W. Chung, J. R. Cahoon. Met. Sci. 13, 635 (1979). Crossref
46. K. Matsuki, K. Minami, M. Tokizawa, Y. Murakami. Met. Sci. 13, 619 (1979). Crossref
47. T. G. Nieh, L. M. Hsiung, J. Wadsworth, R. Kaibyshev. Acta Mater. 46, 2789 (1998). Crossref
48. F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh. Scr. Mater. 50, 511 (2004). Crossref
49. S. Komura, Z. Horita, M. Furukawa, M. Nemoto, T. G. Langdon. Metall. and Mater. Trans. A. 32, 707 (2001). Crossref
50. I. Charit, R. S. Mishra. Acta Mater. 53, 4211 (2005). Crossref
51. R. Kaibyshev, E. Avtokratova, A. Apollonov, R. J. S. M. Davies. Scr. Mater. 54, 2119 (2006). Crossref
52. S. Fujino, N. Kuroishi, M. Yoshino, T. Mukai, Y. Okanda, K. Higashi. Scr. Mater. 37, 673 (1997). Crossref
53. H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi, K. Higashi. Mater. Sci. and Eng. A. 307, 119 (2001). Crossref
54. H. Watanabe, T. Mukai, K. Ishikawa, T. Mohri, M. Mabuchi, K. Higashi. Mater. Trans. 42, 157 (2001). Crossref
55. G. M. Xie, Z. Y. Ma, L. Geng, R. S. Chen. J. Mater. Res. 23, 1207 (2008). Crossref
56. H. Yan, R. Chen, E. Han. Sci. China Ser. E: Technol. Sci. 52, 166 (2009). Crossref
57. J. Babu, A. Dutta. J. Mater. Res. Technol. 4, 348 (2015). Crossref
58. S. A. Shei, T. G. Langdon. Acta Metall. 26, 639 (1978). Crossref
59. D. W. Livesey, N. Ridley. Metall. Trans. A. 9, 519 (1978). Crossref
60. T. G. Nieh, J. Wadsworth. Mater. Sci. Eng. A. 239, 88 (1997). Crossref
61. G. Wegmann, R. Gerling, F. P. Schimansky, H. Clemens, A. Bartels. Intermetallics. 10, 511 (2002). Crossref
62. J. Sun, Y. H. He, J. S. Wu. Mater. Sci. Eng. A. 329, 885 (2002). Crossref
63. W. Y. Kim, S. Hanada, T. Takasugi. Acta Mater. 46, 3593 (1998). Crossref
64. T. G. Nieh, W. C. Oliver. Scr. Metall. 23, 851 (1989). Crossref
65. M. Yoshida, Y. Shinoda, T. Akatsu, F. Wakai. J. Am. Ceram. Soc. 87, 1122 (2004). Crossref
66. F. Wakai, T. Nagano. J. Mater. Sci. 26, 241 (1991). Crossref
67. A. A. Sharif, M. L. Mecartney. Acta Mater. 51, 163 (2003). Crossref
68. T. Chen, F. A. Mohamed, M. L. Mecartney. Acta Mater. 54, 4415 (2006). Crossref
69. R. P. Dillon, D. K. Kim, J. E. Trujillo, W. M. Kriven, M. L. Mecartney. J. Mater. Res. 23, 556 (2008). Crossref
70. T. D. Wang, J. C. Huang. Mater. Trans. 42, 1781 (2001). Crossref
71. Y. Nishida, I. Sigematsu, H. Arima, J. C. Kim, T. Ando. J. Mater. Sci. Lett. 21, 465 (2002). Crossref
72. Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto. Scr. Mater. 37, 431 (1997). Crossref
73. M. Bletry, P. Guyot, Y. Brechet, J. J. Blandin, J. L. Soubeyroux. Intermetallics. 12, 1051 (2004). Crossref
74. Y. Saotome, T. Hatori, T. Zhang, A. Inoue. Mater. Sci. Eng. A. 304 - 306, 716 (2001). Crossref
75. Y. Kawamura, T. Nakamura, A. Inoue. Scr. Mater. 39, 301 (1998). Crossref
76. Y. Kawamura, T. Itoi, T. Nakamura, A. Inoue. Sci. Eng. A. 304, 735 (2001). Crossref
77. B. Gun, K. J. Laws, M. Ferry. J. Non-Cryst. Solids. 352, 3896 (2006). Crossref
78. L. N. Hansen, M. E. Zimmerman, D. L. Kohlstedt. J. Geophys. Res. Solid Earth. 116 (B8), 1 (2011). Crossref
79. S. M. Schmid. Tectonophysics. 31, 21 (1976). Crossref
80. A. Dimanov, E. Rybacki, R. Wirth, G. Dresen. J. Struct. Eng. 29, 1049 (2007). Crossref
81. W. B. Durham, L. A. Stern, S. H. Kirby. J. Geophys. Res. Solid Earth. 106, 11031 (2001). Crossref
82. T. H. Jacka. Cold Reg. Sci. Technol. 8, 261 (1984). Crossref
83. X. Xu, T. Nishimura, N. Hirosaki, R. J. Xie, Y. Yamamoto, H. Tanaka. Acta Mater. 54, 255 (2006). Crossref
84. R. S. Mishra, A. K. Mukherjee, D. K. Mukhopadhyay, C. Suryanarayana, F. H. Froes. Scr. Mater. 34, 1765 (1996). Crossref
85. G. F. Wang, K. C. Chan, K. F. Zhang. Scr. Mater. 54, 765 (2006). Crossref
86. X. Zhou, D. M. Hulbert, J. D. Kuntz, J. E. Garay, A. K. Mukherjee. Superplasticity Of the nanostructured binary systems of zirconia-alumina-Spïnel ceramics by spark plasma sintering process, Advances in Ceramic Matrix Composites X 155: Proceedings of the 106th Annual Meeting of The American Ceramic Society. Indianapolis, Indiana, USA (2004) pp. 155 - 164. Crossref
87. G. E. Dieter. Mechanical metallurgy, Third ed. McGraw-Hill, London (1989).
88. M. Mulholland, T. Khraishi, Y. Shen, M. Horstemeyer. Int. J. Plast. 22 (9), 1728 (2006). Crossref
89. R. L. Sapra. Curr. Med. Res. and Prac. 4, 130 (2014). Crossref