Computer analysis of the cemented carbides’ microstructure

D.G. Kagramanyan ORCID logo , E.P. Konstantinova, A.N. Nekrasov, B.B. Straumal, I.Y. Konyashin, L.N. Shchur ORCID logo show affiliations and emails
Received  29 September 2021; Accepted  11 October 2021
Citation: D.G. Kagramanyan, E.P. Konstantinova, A.N. Nekrasov, B.B. Straumal, I.Y. Konyashin, L.N. Shchur. Computer analysis of the cemented carbides’ microstructure. Lett. Mater., 2021, 11(4) 447-451
BibTex   https://doi.org/10.22226/2410-3535-2021-4-447-451

Abstract

Microstructure of cemented carbide. Ellipse marks the example of the analyzed “island” Co grains. CW and PW mark the example of WC/WC GBs completely and partially wetted by a Co binder. IA and OA are incoming and outcoming angles in the cobalt binder.Cemented carbides have been known for about a hundred years and are now widely used in mining, civil and road construction, and mechanical engineering. Their improvement requires the development of novel technologies based on fundamentally new approaches. Here the method for microstructure analysis using computer processing with elements of machine learning and artificial intelligence is proposed. It has been applied to the analysis of micrographs obtained by the scanning electron microscopy of the WC-Co cemented carbides. The geometric parameters of the WC / Co interphase boundaries are extracted using mathematical methods for processing digital pictures. This method is applied to the micrographs of three samples with different WC mean grain sizes. It has been found that the distribution of the contact angles of WC / Co interphase boundaries has a pronounced bimodal structure, and the values of the peak angles are practically the same for the samples of the fine-, medium-, and coarse-grain cemented carbide grades. The distributions of the semiaxes for the isolated areas of the cobalt binder are also obtained. The probability of finding a particular value of long and short semiaxis decreases exponentially with increasing semiaxis length. Contrary to the contact angles, the exponents are different for samples with different WC grains sizes. The obtained results are discussed using the ideas of wetting of grain boundaries and faceting-roughening of interphase boundaries.

References (43)

1. H. Zhang, J. Xiong, Z. Guo, T. Yang, J. Liu, T. Hua. Ceramics International. 47, 26050 (2021). Crossref
2. C. Edtmaier, M. Wolf, R. de Oro Calderon, W.-D. Schubert. Int. J. Refract. Met. Hard Mater. 100, 105652 (2021). Crossref
3. M. Mariani, I. Goncharov, D. Mariani, G. P. De Gaudenzi, A. Popovich, N. Lecis, M. Vedani. Int. J. Refract. Met. Hard Mater. 100, 105639 (2021). Crossref
4. J.-H. Lee, S.-K. Hong, H.-K. Park. Int. J. Refract. Met. Hard Mater. 100, 105649 (2021). Crossref
5. K.-W. Kim, G.-S. Ham, S.-H. Park, J.-W. Cho, K.-A. Lee. Int. J. Refract. Met. Hard Mater. 99, 105591 (2021). Crossref
6. K.-F. Wang, X.-H. Yang, K.-C. Chou, G.-H. Zhang. Int. J. Refract. Met. Hard Mater. 98, 105569 (2021). Crossref
7. H. Fei, H. Wu, X. Yang, B. Xing, Y. Yang, J. Xiong, J. Liu.Int. J. Refract. Met. Hard Mater. 98, 105545 (2021). Crossref
8. Y. Yang, Y. Yang, C. Liao, G. Yang, Y. Qin, Q. Q. Li, M. Wu. Tribology International. 161, 107086 (2021). Crossref
9. K. Wang, K. Zhao, J. Liu, D. Liu, T. Li, W. Li, Z. Sun, L. An. Ceramics International. 47, 20731 (2021). Crossref
10. K. E. Agode, C. Wolff, M. Nouari, A. Moufki. Int. J. Refract. Met. Hard Mater. 99, 105588 (2021). Crossref
11. K. Maier, T. Klünsner, M. Krobath, P. Pichler, S. Marsoner, W. Ecker, C. Czettl, J. Schäfer, R. Ebner. Int. J. Refract. Met. Hard Mater. 100, 105633 (2021). Crossref
12. Z. Z. Fang, X. Wang, T. Ryu, K. S. Hwang, H. Y. Sohn. Int. J. Refr. Met. Hard Mater. 27, 288 (2009). Crossref
13. H. Li, Y. Du, J. Long, Z. Ye, Z. Zheng, H. Zapolsky, G. Demange, Z. Jin, Y. Peng. Computational Materials Science. 196, 110526 (2021). Crossref
14. C. Qian, K. Li, H. Cheng, W. Zhang, X. Jiang, Y. Liu. Int. J. Refract. Met. Hard Mater. 98, 105547 (2021). Crossref
15. J. Chen, L. Zhou, J. Liang, B. Liu, J. Liu, R. Chen, X. Deng, S. Wu, M. Huang. Materials Chemistry and Physics. 271, 124919 (2021). Crossref
16. P. Pereira, L. M. Vilhena, J. Sacramento, A. M. R. Senos, L. F. Malheiros, A. Ramalho. Wear. 482 - 483, 203924 (2021). Crossref
17. Q. Zhang, K. Huang, J. Wang, L. Wang, M. Yuan, Y. Tian, L. Ouyang. Ceramics International. 47, 22683 (2021). Crossref
18. B. Han, W. Dong, B. Fan, S. Zhu. RSC Adv. 11, 22495 (2021). Crossref
19. Y. Yang, L. M. Luo, X. Zan, X. Y. Zhu, L. Zhu, Y. C. Wu. Int. J. Refract. Met. Hard Mater. 98, 105536 (2021). Crossref
20. S. Lay. Int. J. Refract. Met. Hard Mater. 99, 105584 (2021). Crossref
21. K. Lu, C. Shen, Y. He, S. Huang, Y. Ba. Int. J. Refract. Met. Hard Mater. 98, 105563 (2021). Crossref
22. E. Fransson, M. Gren, G. Wahnström. Acta Materialia. 216, 117128 (2021). Crossref
23. T. Yang, K. Shi, X. Liu, J. Sang, X. Xia, W. Su, J. Ren, R. Zhang, B. Xing. Int. J. Refract. Met. Hard Mater. 98, 105548 (2021). Crossref
24. K. Wang, R. Wang, X. Zhou, G. Li, J. Pei, Q. Wang. Int. J. Refract. Met. Hard Mater. 100, 105630 (2021). Crossref
25. D. S. Bulgarevich, S. Tsukamoto, T. Kasuya, M. Demura, M. Watanabe. Sci. Rep. 8, 2078 (2018). Crossref
26. M. Chandross, E. A. Holm. Metal. Mater. Trans. A. 41, 3018 (2010). Crossref
27. I. Konyashin, B. Ries, S. Hlawatschek, A. Mazilkin. Int. J. Refr. Met. Hard Mater. 71, 357 (2018). Crossref
28. I. Konyashin, B. Ries, F. Lachmann, R. Cooper, A. Mazilkin, B. Straumal, A. Aretz, V. Babaev. Int. J. Refr. Met. Hard Mater. 26, 583 (2008). Crossref
29. I. Konyashin, B. Ries, F. Lachmann, A. T. Fry. J. Mater. Sci. 47, 7072 (2012). Crossref
30. D. R. K. Brownrigg. Comm. ACM. 27, 807 (1984). Crossref
31. O. Nobuyuki. IEEE Trans. Systems, Man & Cyber. 9, 62 (1979). Crossref
32. H. Farid, E. P. Simoncelli. Optimally rotation-equivariant directional derivative kernels. In: Computer Analysis of Images and Patterns (ed. by G. Sommer, K. Daniilidis, J. Pauli). Lecture Notes in Computer Science. Springer, Berlin, Heidelberg (1997) 296 p. Crossref
33. W. Rong, Z. Li, W. Zhang, L. Sun. 2014 IEEE International Conference on Mechatronics and Automation. Tianjin, China (2014) p. 577. Crossref
34. S. Suzuki, K. Abe. Comp. Vis. Graph. Image Proc. 30, 32 (1985). Crossref
35. H. John, S. Jack. Speeding Up the Douglas-Peucker Line-Simplification Algorithm. Vancouver, CiteSeerX (1992).
36. I. Konyashin, B. Ries, D. Hlawatschek, Y. Zhuk, A. Mazilkin, B. Straumal, F. Dorn, D. Park. Int. J. Refract. Met. Hard Mater. 49, 203 (2015). Crossref
37. I. Konyashin, B. B. Straumal, B. Ries, M. F. Bulatov, K. I. Kolesnikova. Mater. Lett. 196, 1 (2017). Crossref
38. E. I. Rabkin, L. S. Shvindlerman, B. B. Straumal. Int. J. Mod. Phys. B. 5, 2989 (1991). Crossref
39. E. L. Maksimova, L. S. Shvindlerman, B. B. Straumal. Acta metall. 36, 1573 (1988). Crossref
40. F. Ernst, M. W. Finnis, A. Koch, C. Schmidt, B. Straumal, W. Gust. Z. Metallk. 87, 911 (1996).
41. J. Schölhammer, B. Baretzky, W. Gust, E. Mittemeijer, B. Straumal. Interf. Sci. 9, 43 (2001). Crossref
42. B. B. Straumal, O. A. Kogtenkova, A. S. Gornakova, V. Sursaeva, B. Baretsky. J. Mater. Sci. 51, 382 (2016). Crossref
43. M. Grötschel, L. Lovász, A. Schrijver. The Ellipsoid Method. In: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics. Heidelberg, Springer (1993). Crossref

Funding