Comparison of traditional and fullerene-based adsorbents for extraction of 1,4‑dioxane and 2‑methyl-1,3‑dioxolane from milk

A.I. Kochaev ORCID logo , R. Razavi, S. Kaya, M. Mogaddam, N. Altunay, M. Nemati, K.P. Katin ORCID logo , K.S. Grishakov, A.I. Podlivaev, M.M. Maslov show affiliations and emails
Received 14 September 2021; Accepted 08 October 2021;
Citation: A.I. Kochaev, R. Razavi, S. Kaya, M. Mogaddam, N. Altunay, M. Nemati, K.P. Katin, K.S. Grishakov, A.I. Podlivaev, M.M. Maslov. Comparison of traditional and fullerene-based adsorbents for extraction of 1,4‑dioxane and 2‑methyl-1,3‑dioxolane from milk. Lett. Mater., 2021, 11(4) 442-446
BibTex   https://doi.org/10.22226/2410-3535-2021-4-442-446

Abstract

Quantum theory and analysis of chemical reactivity were applied to choose suitable adsorbents that ensure efficient solid-phase microextraction of dioxane and dioxalane from milk. It is shown that carbon nanostructures possess some advantages over primary and secondary amines.Using density functional methods, the results of the analysis of traditional adsorbents and adsorbents based on nanosized particles capable of trapping 1,4‑dioxane and 2‑methyl-1,3‑dioxolane molecules in milk are presented. We considered the following interacting compounds: 1,4‑dioxane — primary amine, 1,4‑dioxane — secondary amine, 1,4‑dioxane — fullerene C20, 1,4‑dioxane — a fragment of the structure of activated carbon, 2‑methyl-1,3‑dioxolane — primary amine, 2‑methyl-1,3‑dioxolane — secondary amine, 2‑methyl-1,3‑dioxolane — fullerene C20, 2‑methyl-1,3‑dioxolane — a fragment of the structure of activated carbon. We determined the optimal configurations of the corresponding interacting structures, estimated their binding energies and chemical potentials. The highest binding energy was obtained for 1,4‑dioxane adsorbed on C20 fullerene. At the same time, the energy gaps between the occupied HOMO and unoccupied LUMO molecular states were calculated, which makes it possible to characterize the reactivity and stability of molecules. Compounds of 1,4‑dioxane and 2‑methyl-1,3‑dioxolane with amines have rather large gaps HOMO-LUMO. Using the concept of the electronic localization function, we found that a covalent bond is formed between 1,4‑dioxane and C20 fullerene with a sufficiently high degree of electron localization in the bond region. In other cases, the value of the localization function indicates the absence of a chemical bond between the compounds. The proposed study gives recommendations on the adsorption of 1,4‑dioxane and 2‑methyl-1,3‑dioxolane for further solid-phase microextraction, which will allow them to be found in milk by gas chromatography using a flame ionization detector.

References (23)

1. T. Kasai, H. Kano, Y. Umeda, T. Sasaki, N. Ikawa, T. Nishizawa, K. Nagano, H. Arito, H. Nagashima, S. Fukushima. Inhalation Toxicology. 21, 889 (2009). Crossref
2. J. Fisher, D. Mahle, L. Bankston, R. Greene, J. Gearhart. Am. Ind. Hyg. Assoc. J. 58, 425 (1997). Crossref
3. M. Sun, C. Lopez-Velandia, D. R. U. Knappe. Environmental Science & Technology. 50, 2246 (2016). Crossref
4. L. I. Osemwengie, S. Steinberg. J Chromatogr A. 993, 1 (2003). Crossref
5. G. Carrera, L. Vegué, M. R. Boleda, F. Ventura. J Chromatogr A. 3, 1487 (2017). Crossref
6. Y.-M. Park, H. Pyo, S.-J. Park, S.-K. Park. Analytica Chimica Acta. 548, 109 (2005). Crossref
7. P. E. Grimmett, J. W. Munch. Journal of Chromatographic Science. 47, 31 (2009). Crossref
8. D. K. Stepien, P. Diehl, J. Helm, A. Thoms, W. Püttmann. Water Research. 48, 406 (2014). Crossref
9. S. M. Simonich, P. Sun, K. Casteel, S. Dyer, D. Wernery, K. Garber, G. Carr, T. Federle. Integrated Environmental Assessment and Management. 9, 554 (2013). Crossref
10. G. Vas, K. Vékey. J. Mass Spectrom. 39, 233 (2004). Crossref
11. S. Biniak, G. Szymański, J. Siedlewski, A. Światkowski. Carbon. 35, 1799 (1997). Crossref
12. J. P. Boudou, M. Chehimi, E. Broniek, T. Siemieniewska, J. Bimer. Carbon. 41, 1999 (2003). Crossref
13. N. Ravi, S. A. Anuar, N. Y. M. Yusuf, W. N. W. R. Isahak, M. S. Masdar. Materials Research Express. 5, 055501 (2018). Crossref
14. Y. G. Ko, S. S. Shin, U. S. Choi. J. Colloid Interface Sci. 361, 594 (2011). Crossref
15. A. V. Eletskii. Physics-Uspekhi. 47, 1119 (2004). Crossref
16. R. A. Brazhe, I. S. Olenin. J. Phys.: Conf. Ser. 345, 012039 (2012). Crossref
17. A. I. Kochaev. AIP Advances. 7, 025202 (2017). Crossref
18. M. W. Schmidt et al. J. Comput. Chem. 14, 1347 (1993). Crossref
19. S. Grimme, J. Antony, S. Ehrlich, H. Krieg. J. Chem. Phys. 132, 154104 (2010). Crossref
20. H. Y. Ammar, E.-S. R. H. El-Gharkawy. European Journal of Scientific Research. 120, 401 (2014).
21. M. A. Gimaldinova, M. M. Maslov, K. P. Katin. CrystEngComm. 20, 4336 (2018). Crossref
22. F. R. Bagsican, A. Winchester, S. Ghosh, X. Zhang, L. Ma, M. Wang, H. Murakami, S. Talapatra, R. Vajtai, P. M. Ajayan, J. Kono, M. Tonouchi, I. Kawayama. Scientific Reports. 7, 1774 (2017). Crossref
23. A. Kochaev, R. Meftakhutdinov, R. Sibatov, K. Katin, M. Maslov, V. Efimov. Appl. Surf. Sc. 562, 150150 (2021). Crossref

Funding

1. Ministry of Science and Higher Education of the Russian Federation - Agreement No. 075-10-2021-107 dated September 24, 2021; Government contract identifier 0000000007521R500002