Room temperature hydrogen storage in defective single-walled carbon nanotubes: a molecular dynamics study

M. Garg, S. Ghosh ORCID logo , V. Padmanabhan show affiliations and emails
Received 13 May 2021; Accepted 02 August 2021;
Citation: M. Garg, S. Ghosh, V. Padmanabhan. Room temperature hydrogen storage in defective single-walled carbon nanotubes: a molecular dynamics study. Lett. Mater., 2021, 11(3) 321-326
BibTex   https://doi.org/10.22226/2410-3535-2021-3-321-326

Abstract

A defective nanotube containing 5 and 8 -membered rings shows the highest adsorption capacity of 1.82 %wt/wt which is higher than the pristine nanotube and the adsorption capacity increases with %defect.Hydrogen has the potential to be an alternative source of energy. However, most of the research on hydrogen storage carried out in the past is based on low temperature (<80 K) whereas storage near room temperature is desired. Here, we report room-temperature hydrogen storage capacity of defective single-walled carbon nanotubes (SWCNT) investigated using molecular dynamics simulations and density functional theory. Four different types of defective SWCNTs are considered to study room temperature hydrogen storage. We observed maximum adsorption capacity of SWCNT with 5 and 8-membered ring defects, namely, D1. The SWCNT with other three defects studied here, Stone-Wales with 5- and 7-membered ring defect (D2), 5-membered ring defect (D3), and 3-, 5- and 8-membered ring defect (D4) have negative adsorption effect compared to the defect-free SWCNT. The highest gravimetric capacity of 1.82 wt.% is found for the D1 defective SWCNT at room temperature, 298 K and 140 atm. The DFT calculations show that hydrogen adsorption strongly depends on the type of defect where the 8-membered ring has the highest adsorption energy and the 3-membered ring has the lowest adsorption energy. A combination of 5- and 8-membered defective rings can increase hydrogen adsorption significantly even at room temperature.

References (28)

1. Target explanation document: onboard hydrogen storage for light-duty fuel cell vehicles, tech. Rep., Office of Energy Efficiency and Renewable Energy (2017). Website: https://www.energy.gov/eere/fuelcells/downloads/doe-targets-onboard-hydrogen-storage-systems-light-duty-vehicles.
2. N. T. Stetson. Hydrogen storage program area - plenary presentation, 2015. Annual merit review and peer evaluation meeting, fuel cell technologies office. U. S. Department of Energy (2015).
3. A. C. Dillon, T. Gennett, J. L. Alleman, K. M. Jones, P. A. Parilla, M. J. Heben. Carbon nanotube materials for hydrogen storage. In: Proceedings of the 2000 U. S. DOE-NREL Hydrogen Program Review (2000).
4. M. D. Allendorf, Z. Hulvey, T. Gennett et al. Energy Environ. Sci. 11, 2784 (2018). Crossref
5. S. Rostami, A. N. Pour, A. Salimi, A. Abolghasempour. Int. J. of Hydrog. Energy. 43 (14), 7072 (2018). Crossref
6. A. Ahmed, S. Seth, J. Purewal, A. G. Wong-Foy, M. Veenstra, A. J. Matzger, D. J. Siegel. Nat. Commun. 10, 1568 (2019). Crossref
7. B. Szczesniak, J. Choma, M. Jaroniec. J. Colloid Interface Sci. 514, 801 (2018). Crossref
8. S. Palla, N. S. Kaisare. Int. J. of Hydrog. Energy. 45 (48), 25862 (2020). Crossref
9. M. Mohan, V. K. Sharma, E. A. Kumar, V. Gayathri. Energy Storage. 1 (2), e35 (2019). Crossref
10. A. C. Dillon, M. J. Heben. Appl. Phys. A. 72, 133 (2001). Crossref
11. R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, G. Wolf. J. of Power Sources. 159 (2), 781 (2006). Crossref
12. M. Elyassi, A. Rashidi, M. R. Hantehzadeh. J Inorg Organomet Polym. 27, 285 (2017). Crossref
13. S. Ghosh, V. Padmanabhan. Int. J. of Hydrog. Energy. 42 (38), 24237 (2017). Crossref
14. S. Ghosh, V. Padmanabhan. Diam. Relat. Mater. 77, 46 (2017). Crossref
15. D. Silambarasan, V. J. Surya, K. Iyakutti, K. Asokan, V. Vasu, Y. Kawazoe. Applied Surface Science. 418 A, 49 (2017). Crossref
16. K. A. Krylova, J. A. Baimova, I. P. Lobzenko, A. I. Rudskoy. Physica B: Condens. Matter. 583, 412020 (2020). Crossref
17. S. Ghosh, V. Padmanabhan. Diam. Relat. Mater. 59, 47 (2015). Crossref
18. L. G. Zhou, S. Q. Shi. Carbon. 41, 613 (2003). Crossref
19. A. J. Stone, D. J. Wales. Chem. Phys. Lett. 128, 501 (1986). Crossref
20. L. G. Zhou, S. Q. Shi. Appl. Phys. Lett. 83, 1222 (2003). Crossref
21. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima. Nature. 430, 870 (2004). Crossref
22. S. Plimpton. J. Comp. Phys. 117, 1 (1995). Crossref
23. P. Giannozzi et al. J. Phys.: Condens. Matter. 21 (39), 395502 (2009). Crossref
24. M. Oobatake, T. Ooi. Prog. Theor. Phys. 48 (6), 2132 (1972). Crossref
25. F. Darkrim, D. Levesque. J. Chem. Phys. 109 (12), 4981 (1998). Crossref
26. J. P. Perdew, A. Zunger. Phys. Rev. B. 23 (10), 5048 (1981). Crossref
27. W. Kohn, L. J. Sham. Phys. Rev. 140, A1133 (1965). Crossref
28. S. Grimme. J. Comput. Chem. 27, 1787 (2006). Crossref

Funding