Two types of the crack arrest during full-scale pneumatic testing of main gas pipelines

D.E. Kaputkin ORCID logo , A.B. Arabey show affiliations and emails
Received 15 April 2021; Accepted 24 May 2021;
Citation: D.E. Kaputkin, A.B. Arabey. Two types of the crack arrest during full-scale pneumatic testing of main gas pipelines. Lett. Mater., 2021, 11(3) 239-243
BibTex   https://doi.org/10.22226/2410-3535-2021-3-239-243

Abstract

During fracture of high-pressure pipelines, the longitudinal crack can stop in one of two ways, which are discussed in the article.With the running fracture of the main gas pipeline, a longitudinal crack can stop propagating in one of two ways. The first way is arresting the crack without changing its direction due to the energy transferred from the expansion of the gas becomes less than the energy required to continue opening the crack. The second way is more common, when the crack changes the direction of its propagation from longitudinal to circumferential and forms a loopback. The known mathematical models describe and can predict only the first way to arrest the crack propagation, but so far they cannot simulate the second way. This paper shows that the reason for the realization of the second way is a change in the configuration (“flattening”) of the cross-section of the pipe when a crack approaches. This leads to the appearance of radial normal stresses in the pipe wall. If the radial normal stresses exceed longitudinal ones, the planes of maximum tangential stresses change their positions from longitudinal to placing at an angle of 45° to the axis of the pipe. Since the metal is ductile, and the fracture results from tangential stresses, the crack changes its direction and is looped back. This situation takes place when the radius of curvature of flattening becomes less than the pipe diameter.

References (19)

1. Yu. I. Matrosov, D. A. Litvinenko, S. A. Golovanenko. Steel for Main Gas Pipelines. Moscow, Metallurgiya (1989) 288 p. (in Russian) [Ю. И. Матросов, Д. А. Литвиненко, С. А. Голованенко. Сталь для магистральных трубопроводов. Москва, Металлургия (1989) 288 с.].
2. A. B. Arabei. Izv. VUZ, Ferrous metals. 7, 3 (2010). (in Russian) [А. Б. Арабей. Изв. ВУЗ, Черные металлы. 7, 3 (2010).].
3. E. Sugie, M. Matsuoka, T. Akiyama, H. Mimura, Y. Kawaguchi. Journal of Pressure Vessel Technology, Transactions of the ASME. 104 (4), 338 (1982). Crossref
4. G. M. McClure, A. R. Duffy, R. J. Eiber. Trans. ASME. B87 (3), 265 (1965). Crossref
5. N. Osborne. M. Bergsten. Advanced Materials and Processes. 167 (2), 26 (2009).
6. GOST 31447 - 2012. Steel welded pipes for trunk gas pipelines, oil pipelines and oil products pipelines. Specifications. (in Russian) [ГОСТ 31447 - 2012. Трубы стальные сварные для магистральных газопроводов, нефтепроводов и нефтепродуктопроводов. Технические условия.].
7. API Spec. 5L. Specification for Line Pipe.
8. DIN 17120 - 1984. Welded circular steel tubes for structural steelwork; technical delivery conditions (1984).
9. DIN EN 10208-2-2009. Steel pipes for pipelines for combustible fluids - Technical delivery conditions - Part 2: Pipes of requirement class B; German version EN 10208 - 2:2009.
10. D. E. Kaputkin, L. M. Kaputkina, A. I. Abakumov, T. S. Esiev. Letters on Materials. 10 (3), 340 (2020). Crossref
11. M. A. Shtremel’, A. B. Arabei, A. G. Glebov, A. I. Abakumov, T. S. Esiev, I. Yu. Pyshmintsev. Russian Metallurgy. 10, 1191 (2020). Crossref
12. GOST R 55989 - 2014. Main gas pipelines. Design standards for pressure over 10 MPa. Primary requirements (2014). (in Russian) [ГОСТ Р 55989 - 2014. Магистральные газопроводы. Нормы проектирования на давление свыше 10 МПа. Основные требования.].
13. V. I. Feodosiev V. I. Strength of materials. Textbook for universities. 9th ed., Rev. Moscow, Nauka (1986) 512 p. (in Russian) [В. И. Феодосьев. Сопротивление материалов. Учебник для вузов. 9-е изд., перераб. Москва, Наука (1986) 512 с.].
14. G. Mannucci, G. Demofonti, M. R. Galli, C. Spinelli. 12th EPRG / PRCI Biennial Joint Technical Meeting on Pipeline Research. Groningen (1999) 13.
15. G. Mannucci, G. Buzzichelli, P. Salvini, B. Eiber, R. J. Eiber, L. Carlson. Proceedings of the Biennial International Pipeline Conference, 2000. 3rd International Pipeline Conference, IPC 2000. Calgary, Canada (2000). IPC. 1, 315 (2000).
16. B. Eiber, R. J. Eiber, L. Carlson, B. Leis. Proceedings of the Biennial International Pipeline Conference, 2000. 3rd International Pipeline Conference, IPC 2000. Calgary, Canada (2000). IPC. 1, 267 (2000).
17. A. I. Abakumov, I. I. Safronov, A. S. Smirnov, A. B. Arabei, A. G. Glebov, T. S. Esiev, A. O. Struin. Strength and ductility problems. 79 (4), 462 (2017). (in Russian) [А. И. Абакумов, И. И. Сафронов, А. С. Смирнов, А. Б. Арабей, А. Г. Глебов, Т. С. Есиев, А. О. Струин. Проблемы прочности и пластичности. 79 (4), 462 (2017).]. Crossref
18. S. J. Garwood. ASTM Special Technical Publication. 677, 511 (1979).
19. M. A. Stremel’, A. B. Arabei, A. G., Glebov, A. I. Abakumov, T. S. Esiev, I. Yu. Pyshmintsev. Deformation and destruction of materials. 8, 21 (2020). (in Russian) [М. А. Штремель, А. Б. Арабей, А. Г., Глебов, А. И. Абакумов, Т. С. Есиев, И. Ю. Пышминцев. Деформация и разрушение материалов. 8, 21 (2020).].