Experimental prediction of lead failure under tensile load using scanning contact potentiometry technique

A.A. Abu Ghazal ORCID logo , Y.N. Husein, V.I. Surin, S.A. Alkhdour, G.H. Al-Malkawi show affiliations and emails
Received 17 April 2021; Accepted 24 May 2021;
Citation: A.A. Abu Ghazal, Y.N. Husein, V.I. Surin, S.A. Alkhdour, G.H. Al-Malkawi. Experimental prediction of lead failure under tensile load using scanning contact potentiometry technique. Lett. Mater., 2021, 11(3) 249-253
BibTex   https://doi.org/10.22226/2410-3535-2021-3-249-253

Abstract

Prediction exactly of the failure zone in Lead rupture within the same non-homogeneous zone  previously detected exactly using Scanning Contact Potentiometry technique,which was done in the elastic mode before conducting the tensile test.The issue of accurate identifying in advance structural nonhomogeneities of metals is one of the main factors in improving the manufacturing efficiency and safety during service. This paper illustrates the conventional uni-axial tensile test that is carried out on the diffuse and localized necking stages of dog-bone shape lead specimen. The scanning contact potentiometry method was used to locate the rupture zone. Infrared radiation was used to heat the specimen up to 40°C, in order to excite structural nonhomogeneities in the bulk of the tested specimen. It was found that the infrared radiation increases the predictable nonhomogeneity zone. A ductile rupture occurs in the same nonhomogeneity zone that was previously exactly identified using the scanning contact potentiometry method. The formed diffused necking was observed to initiate from the right where the rupture spread diagonally, at an angle of 70° between the tensile axis and the rupture plane. However, the angle between the tensile axis and the hexagonal singular reflex plane was 69°, which was slightly different from the rupture angle. Both results of the rupture angles of the tensile test and the SCP are relatively matching and diverse from the theoretical calculations. The results shown in this work highlight the importance and the efficiency of the experimental SCP method in prediction of the material failure behaviour.

References (24)

1. S. A. Rackley. 23 - Carbon dioxide transportation, Carbon Capture and Storage (2nd Edition). Butterworth-Heinemann (2017) pp. 595 - 611. Crossref
2. P. R. Lewis. Chapter 2 - Sample Examination and Analysis. In: Woodhead Publishing in Materials, Forensic Polymer Engineering (2nd Edition). Woodhead Publishing (2016) pp. 33 - 69. Crossref
3. H. Li, M. Fu. Chapter 3 - Damage Evolution and Ductile Fracture. In: Deformation-Based Processing of Materials. Elsevier (2019) pp. 85 -136. Crossref
4. F. P. E. Dunne. International Journal of Plasticity. 14 (4 - 5), 413 (1998). Crossref
5. V. T. Pham, T. H. Fang. Sci Rep. 10, 15082 (2020). Crossref
6. F. O. Neves, T. L. L. Oliviera, D. U. Braga, A. S. Chaves da Silva. Advances in Materials Science and Engineering. 2014, 658679 (2014). Crossref
7. A. A. Abu Ghazal, P. S. Dzhumaev, A. V. Osintsev, V. I. Polsky, V. I. Surin. Lett. Mater. 9(1), 33 (2019). (in Russian) [А. А. Абу Газал, П. С. Джумаев, А. В. Осинцев, В. И. Польский, В. И. Сурин. Письма о материалах. 9(1), 33 (2019). Crossref
8. V. I. Surin, A. I. Alwaheba, V. G. Beketov, A. A. Abu Gazal. J. Phys.: Conf. Ser. 1636, 012017 (2020). Crossref
9. J. F. Bell. Propagation of plastic waves in pre-stressed bars. Technical Report No. 5, U. S. Naval Contract. The Johns Hopkins University. June 1951.
10. E. J. Sternglass, D. A. Stuart. J. Appl. Mech. 20 (3), 427 (1953). Crossref
11. V. E. Panin, V. S. Pleshanov, S. A. Kobzeva, S. P. Burkova. Theor. Appl. Fract. Mech. 29 (2), 99 (1998). Crossref
12. L. B. Zuev, V. I. Danilov. Phys. Solid State. 39, 1241 (1997). Crossref
13. A. A. Abu Ghazal, V. I. Surin, G. D. Bokuchava, I. V. Papushkin. International conference Condensed Matter Research at the IBR-2. Joint Institute for Nuclear Research, Dubna, Russia (2020) p. 115. Crossref
14. A. A. Abu Ghazal, V. I. Surin, G. D. Bokuchava, I. V. Papushkin. Journal automation in industry. 3, 61 (2019). (in Russian) [А.А. Абу Газал, Г.Д. Бокучава, И.В. Папушкин, В.И. Сурин. Автоматизация в промышленности. 3, 61 (2019).]. Crossref
15. A. A. Abu Ghazal, G. D. Bokuchava, I. V. Papushkin, V. I. Surin, E. A. Shef. XIII International Youth Scientific and Practical Conference “future of atomic energy - AtomFuture 2017”, KnE Engineering. Obninsk, Kaluga region, Russia (2017) p. 109. Crossref
16. V. I. Surin, V. I. Polskij, A. V. Osintsev, P. S. Dzhumaev. Russ J Nondestruct Test. 55, 59 (2019). Crossref
17. K. Kikuchi. 5.09 - Material Performance in Lead and Lead-bismuth Alloy (ed. by Rudy J. M. Konings). In: Comprehensive Nuclear Materials. Elsevier (2012) pp. 207 - 219. Crossref
18. J. F. Smith. Lead Alloys: Alloying, Properties, and Applications. Encyclopedia of Materials: Science and Technology. Elsevier (2001) pp. 4434 - 4438. Crossref
19. H. Huang, L. Xue. International Journal of Pressure Vessels and Piping. 86 (5), 319 (2009). Crossref
20. Y. M. Haddad. Elastic Wave Propagation. In: Mechanical Behaviour of Engineering Materials. Springer, Dordrecht (2000) p. 82. Crossref
21. F. Gramazio, M. Kohler, S. Langenberg. Fabricate 2014: negotiating design and making. UCL Press, Architecture (2017) p. 168.
22. D. F. McFarland. A Preliminary Study of the Alloys of Chromium, Copper, and Nickel. Forgotten Books (2012) p. 70.
23. C. Li, E. Daxin, N. Yi. Journal of Materials Research, 31 (24), 3991 (2016). Crossref
24. Stress Concentration at Notches. In: Fatigue of Structures and Materials (ed. by J. Schijve). Springer, Dordrecht (2009) pp. 59 - 88. Crossref

Funding

1. the Russian Foundation for Basic Research (RFBR) - grant number 19-08-00266/20, 25.03.2020