Study the exchange bias field in ferromagnetic film on antiferromagnetic substrate

Received 09 January 2021; Accepted 12 February 2021;
This paper is written in Russian
Citation: S.V. Belim. Study the exchange bias field in ferromagnetic film on antiferromagnetic substrate. Lett. Mater., 2021, 11(2) 129-134


Displacement of the ferromagnetic film hysteresis loop when the system is heated.In the article, exchange bias in a ferromagnetic film on an antiferromagnetic substrate is studied. These systems are widely used in spintronics devices to fix the state of one of the ferromagnets. The computer simulation method is used for the study. The Ising model and Metropolis algorithm are used. A thin ferromagnetic film on a semi-infinite antiferromagnetic substrate is considered. The layered antiferromagnet model is used for the substrate. The exchange value for the antiferromagnet is lower than for the ferromagnetic film. The Neel temperature for the substrate is lower than the Curie temperature for the ferromagnetic film. For both components of the system, phase transition temperatures are calculated. The exchange bias field is created by exchange interaction at the interface of the film with the substrate. At temperatures above the Neel temperature, the surface layer for the antiferromagnet is not compensated and does not create exchange bias. The dependence of the exchange bias field on the system’s temperature is investigated. Exchange bias shifts the hysteresis loop. The position of the hysteresis loop center determines the exchange bias field. As the temperature decreases, the chess magnetization for the antiferromagnetic substrate and the magnetic moment for the boundary spins layer increase. A computer experiment was performed. The dependence of the exchange bias field on temperature near the phase transition point for the antiferromagnet is linear. As the temperature decreases, the exchange bias becomes constant. This transition is associated with maximizing the chess magnetization of the antiferromagnetic substrate. With a decrease in temperature, the width of the hysteresis loop increases. The width of the hysteresis loop decreases linearly with increasing temperature. A comparison is made with the results of real experiments.

References (25)

1. J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, M. D. Baro. Physics Reports. 422 (3), 65 (2005). Crossref
2. J. Nogues, I. K. Schuller. J. Magn. Magn. Mater. 192, 203 (1999). Crossref
3. M. Kiwi. J. Magn. Magn. Mater. 234, 584 (2001). Crossref
4. A. E. Berkowitz, T. Kentaro. J. Magn. Magn. Mater. 200, 552 (1999). Crossref
5. K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, G. Thomas. Phys. Rev. Lett. 79, 1130 (1997). Crossref
6. W. H. Meiklejohn. J. Appl. Phys. 33 (3), 1328 (1962). Crossref
7. D. Mauri, H. C. Siegmann, P. S. Bagus, E. Kay. J. Appl. Phys. 62 (7), 3047 (1988). Crossref
8. G. Scholten, K. Usadel, U. Nowak. Physical Review B. 71 (6), 1 (2005). Crossref
9. H. Ohldag, H. Shi, E. Arenholz, J. Stohr, D. Lederman. Physical Review Letters. 96 (2), 1 (2006). Crossref
10. D. Suess, M. Kirschner, T. Schrefl, J. Fidler, R. L. Stamps, J.-V. Kim. Phys. Rev. B. 67, 054419 (2003). Crossref
11. O. Billoni, A. Tamarit, S. Cannas. Physica B. 384, 184 (2006). Crossref
12. J. Spray, U. Nowak. Journal of Physics D: Applied Physics. 39, 4536 (2006). Crossref
13. Y. Sakurai, H. Fujiwara. J. Appl. Phys. 93 (10), 8615 (2003). Crossref
14. J.-V. Kim, R. L. Stamps. Phys. Rev. B. 71, 094405 (2005). Crossref
15. S. V. Belim. Letters on Materials. 10 (3), 272 (2020). (in Russian) [С.В. Белим. Письма о материалах. 10 (3), 272 (2020).]. Crossref
16. S. V. Belim, S. S. Belim. Journal of Physics: Conference Series. 1697, 012098 (2020). Crossref
17. S. V. Belim, I. B. Larionov. Journal of Physics: Conference Series. 1546, 012111 (2020). Crossref
18. O. V. Billoni, S. A. Cannas, F. A. Tamarit. J. Phys.: Condens. Matter. 23, 386004 (2011). Crossref
19. D. P. Landau, K. Binder. Phys. Rev. B. 17, 2328 (1978). Crossref
20. U. Wolff. Physical Review Letters. 62, 361 (1988). Crossref
21. J. S. Wang, R. H. Swendsen. Physica A. 167, 565 (1990). Crossref
22. S. K. Giri and T. K. Nath, J. Nanosci. Nanotechnol. 14, 1209 (2014). Crossref
23. M. Meinert, B. Buker, D. Graulich, M. Dunz. Phys. Rev. B. 92, 144408 (2015). Crossref
24. P. Zilske, D. Graulich, M. Dunz, M. Meinert. Appl. Phys. Lett. 110, 192402 (2017). Crossref
25. N. I. Solin, S. V. Naumov, S. V. Telegin et al. J. Exp. Theor. Phys. 125, 1096 (2017). Crossref

Similar papers