Effect of annealing atmosphere on the electrophysical properties of Sr2CuO3

I.B. Bobylev, S.V. Naumov ORCID logo , N.A. Zyuzeva show affiliations and emails
Received 30 September 2020; Accepted 21 October 2020;
This paper is written in Russian
Citation: I.B. Bobylev, S.V. Naumov, N.A. Zyuzeva. Effect of annealing atmosphere on the electrophysical properties of Sr2CuO3. Lett. Mater., 2021, 11(1) 33-38
BibTex   https://doi.org/10.22226/2410-3535-2021-1-33-38

Abstract

The influence of the annealing atmosphere on the electrical conductivity and thermo-EMF of strontium orthocuprate (Sr2CuO3) at temperatures up to 150°C has been investigated. It was shown that during heat treatment in hydrogen or in an atmosphere saturated with water vapor at temperatures above 70°C ionic current carriers appear in Sr2CuO3.The effect of the annealing atmosphere on the electrophysical properties (electrical conductivity and thermo-EMF) of strontium orthocuprate (Sr2CuO3) at temperatures up to 150°C was studied. At temperatures of 100 –150°C, depending on the annealing atmosphere, strontium orthocuprate is capable of absorbing hydrogen and water. Intercalation of both hydrogen and water leads to the appearance of ionic conductivity in Sr2CuO3. In the case of sample processing in a hydrogen atmosphere, new positive current carriers (H+) appear, while during processing in a humid atmosphere, the current carriers are the products of water dissociation — both positive (H+) and negative (OH−) ions. The conductivity of strontium orthocuprate decreases as hydrogen is absorbed. The reason is a decrease in the mobility of the main current carriers (holes) due to an increase of the lattice defect due to the introduction of hydrogen ions into it. When hydrogen or a humid atmosphere replaces the oxygen atmosphere of annealing, a sharp change in the electrophysical properties is observed. Intercalation of hydrogen or water dissociation products into the Sr2CuO3 structure indicates a high mobility of these ions at temperatures above 70°C. The appearance of additional ions (H+ and OH−) in the structure of Sr2CuO3, which are structural defects, leads to a decrease in the mobility of the main of current carriers. Thus, it was shown that strontium orthocuprate is a mixed-type semiconductor. At temperatures below 70°C, Sr2CuO3 is an n-type semiconductor, and at higher temperatures (100 –150°C) it becomes a p-type semiconductor.

References (23)

1. Z. Hiroi, M. Takano, M. Azuma, Y. Takeda. Letters to nature. 364, 315 (1993). Crossref
2. Q. Q. Liu, H. Yang, Y. Yu, L. X. Yang, R. C. Yu, F. Y. Li, C. Q. Jin, S. Uchida. Physica C. 463 - 465, 100 (2007). Crossref
3. A. K. Ivanov-Shits, I. V. Murinю Ionica of solid state. V. 2. Saint Petersburg State University, Saint-Petersburg (2000) 890 p. (in Russian) [А. К. Иванов-Шиц, И. В. Мурин. Ионика твердого тела. Т. 2. Санкт-Петербургский государственный университет, Санкт-Петербург (2000) 890 с.].
4. W. Chen, K. He, Y. Wang, H. Chan, Z. Yan. Sci. Rep. 3, 3149 (2013). Crossref. Crossref
5. Yu. M. Baikov. Phys. Solid State. 42 (6), 1026 (2000). Crossref
6. I. B. Bobylev, S. V. Naumov, N. A. Zyuzeva. Phys. Solid State. 55 (8), 1602 (2013). Crossref
7. I. B. Bobylev, S. V. Naumov, N. A. Zyuzeva. Phys. Met. Metallogr. 118 (7), 671 (2017). Crossref
8. M. D. McCluskey, M. C. Tarun, S. T. Teklemichael. J. Mater. Res. 27 (17), 2190 (2012). Crossref
9. H. Y. Noh, J. Kim, J.-S. Kim, M. J. Lee, H. J. Lee. Crystals. 9 (2), 75 (2019). Crossref
10. I. B. Bobylev, S. V. Naumov, N. A. Zyuzeva. Phys. Solid State. 58 (9), 1744 (2016). Crossref
11. I. B. Bobylev, S. V. Naumov, N. A. Zyuzeva, S. V. Telegin. Phys. Met. Metallogr. 119 (12), 1175 (2018). Crossref
12. T. Motoki, Y. Yanai, K. Nunokawa, S. Gondo, S. Nakamura, J. Shimoyama. Supercond. Sci. Technol. 33 (3), 034008 (2020). Crossref
13. V. P. Gorelov, V. B. Balakireva, A. V. Kuz’min, S. V. Plaksin. Inorganic materials. 50 (5), 495 (2014). Crossref
14. S. N. Shkerin, M. V. Kuznetsov, N. A. Kalashnikova. Russian J. of Electrochem. 39 (6), 591 (2003). Crossref
15. R. Smith. Semiconductors. Moscow, Mir (1982) 558 p. (in Russian) [Р. Смит. Полупроводники. Москва, Мир (1982) 558 с.].
16. M. A. Augustyniak-Jablokow, Yu. V. Yablokov, I. Jacyna-Onyszkiewicz, T. A. Ivanova, V. A. Shustov. Acta Phys. Pol. A. 112 (3), 523 (2007). Crossref
17. S. V. Telegin, A. Yu. Zuev, S. V. Naumov, E. I. Patrakov, D. S. Tsvetkov. Synthesis, Journal of Chemistry. 2017, 3057873 (2017). Crossref
18. S. S. Gorelik, M. Ya. Dashevskiy. Material science of semiconductors and dielectrics. Mosсow, Metallurgiya (1988) 375 p. (in Russian) [С. С. Горелик, М. Я. Дашевский. Материаловедение полупроводников и диэлектриков. Москва, Металлургия (1988) 375 с.].
19. E. K. Shalkova, Yu. M. Baikov, T. A. Ushakova. Sverhprovodimost: Fizica, Khimiya, Tehnika. 5 (1), 24 (1992). (in Russian) [Е. К. Шалкова, Ю. М. Байков, Т. А. Ушакова. СФХТ. 5 (1), 24 (1992).].
20. N. A. Zyuzeva, I. B. Bobylev, S. V. Naumov, E. P. Romanov. Phys. Met. Metallogr. 115 (6), 547 (2014). Crossref
21. R. Zhao, M. J. Goringe, S. Myhra, P. S. Turner. Philosophical Mag. A. 66 (4), 491 (1992). Crossref
22. T. Hirata. Phys. Stat. Sol. (a). 156 (2), 227 (1996). Crossref
23. V. A. Zelenskiy, M. I. Alymov, A. B. Ankudinov, I. V. Tregubova. Perspektivnye materialy. 6 (6), 83 (2009). (in Russian) [В. А. Зеленский, М. И. Алымов, А. Б. Анкудинов, И. В. Трегубова. Перспективные материалы. 6 (6), 83 (2009).].

Similar papers

Funding