Kinetics of formation and structural rebuilding crystalline films

I.G. Popova ORCID logo , A.V. Blagin, L.V. Blagina, V.I. Lebedev show affiliations and emails
Received 06 September 2020; Accepted 06 November 2020;
This paper is written in Russian
Citation: I.G. Popova, A.V. Blagin, L.V. Blagina, V.I. Lebedev. Kinetics of formation and structural rebuilding crystalline films. Lett. Mater., 2021, 11(1) 5-10
BibTex   https://doi.org/10.22226/2410-3535-2021-1-5-10

Abstract

Illustration of the temperature dependence of the activation threshold for desorption at low levels of surface filling with deposited atoms: the presence of two curves indicates a rearrangement of the surface structure.The problem of fundamental analysis of “semiconductor film - matrix crystal” heterostructures is described. It is displayed that a universal model can be built on the basis of the quantum-statistical approach using the representations self-organization of ordered structures in systems far from spinodal isotherms and phase diagrams illustrating the conditions for the formation of films are calculated. Phase transitions of the first kind as the rearrangements of the “order-disorder” type are described within the framework of quantum theory using the Dicke model. The apparatus of two-period Green's functions is used. The thin-film structure energy is described using the pseudopotential of the crystal field, which has elements of the substrate symmetry. The influence of the surface passivation degree on the nature and relief of structural changes is shown. Signs of the formation of dimeric and dipole elements of the film relief are discussed. It is shown that the processes of particles desorption depend on the temperature and the quantity of deposited particles with which the atoms of the matrix crystal, i. e. silicon, are bound. The kinetic processes of the formation of film structures and rearrangements of their structure are shown as local phase transformations caused by the adsorption of atoms with different concentrations of the adsorbed second phase. The threshold character of the surface structure rearrangement is confirmed. It is assigned that the order parameter, determined by the shear component of the activation threshold for structure reconstruction and the level populations, depends on inhomogeneities in the distribution of atoms at the heterointerface. Under the considered conditions, these inhomogeneities are stationary nonlinear — kink-like perturbations. The characteristics of disturbances are determined by the degree of difference between the crystal chemical parameters of the matrix and deposited materials. The transition to the formation of the films at the macrolevel is interpreted as a process of self-organization of a two-dimensional structure.

References (20)

1. С. Weisbuch, B. Vinter. Quantum semiconductor structures. Fundamentals and Applications. 611 (38), 217 (1991).
2. A. V. Blagin, V. V. Kalinchuk, V. I. Lebedev, L. S. Lunin. Physics of crystallization and defects of solid structures on micro- and nanolevels. Rostov-on-Don. SSC RAS (2009) 286 p. (in Russian) [А. В. Благин, В. В. Калинчук, В. И. Лебедев, Л. С. Лунин. Физика кристаллизации и дефектов твердотельных структур на микро- и наноуровне. Ростов-на-Дону, ЮНЦ РАН (2009) 286 с.].
3. D. Bimberg, I. P. Ipatova, P. S. Kopyev, N. N. Ledentsov, V. G. Malyshkin, V. A. Shchukin. Phys. Usp. 167 (5), 552 (1997). (in Russian) [Д. Бимберг, И. П. Ипатова, П. С. Копьев, Н. Н. Леденцов, В. Г. Малышкин, В. А. Щукин. УФН. 167 (5), 552 (1997).]. Crossref
4. V. I. Lebedev. Physics of phase transitions in defective and small-size crystals. Stavropol, SevKavGTU (2008) 227 p. (in Russian) [В. И. Лебедев. Физика фазовых переходов в дефектных и малоразмерных кристаллах. Ставрополь, СевКавГТУ (2008) 227 с.].
5. T. V. Krachino, M. V. Kuzmin, M. V. Loginov, M. A. Mittsev. Phys. Solid State. 40 (2), 371 (1998). (in Russian) [Т. В. Крачино, М. В. Кузьмин, М. В. Логинов, М. А. Митцев. ФТТ. 40 (2), 371 (1998).]. Crossref
6. V. N. Ageev, E. Yu. Afanasyeva, N. D. Potekhina, A. Yu. Potekhin. Phys. Solid State. 42 (2). 347 (2000). Crossref
7. M. V. Gomoyunova, G. S. Grebenyuk, V. Yu. Davydov, I. A. Ermakov, I. A. Eliseev, A. A. Lebedev, S. P. Lebedev, E. Yu. Lobanova, A. N. Smirnov, D. A. Smirnov, I. I. Pronin. Phys. Solid State. 60 (7), 1423 (2018). (in Russian) [М. В. Гомоюнова, Г. С. Гребенюк, В. Ю. Давыдов, И. А. Ермаков, И. А. Елисеев, А. А. Лебедев, С. П. Лебедев, Е. Ю. Лобанова, А. Н. Смирнов, Д. А. Смирнов, И. И. Пронин. ФТТ. 60 (7), 1423 (2018).]. Crossref
8. I. V. Shtrom, V. F. Agekyan, A. Yu. Serov, N. G. Filosofov, R. R. Akhmadullin, D. E. Krizhkov, G. Karczewski. Semiconductors. 52 (4), 481 (2018). Crossref
9. V. V. Ilyasov, I. V. Ershov, I. G. Popova, K. D. Pham, Ch. V. Nguyen. Superlattices and Microstructures. 117, 72 (2018). Crossref
10. V. V. Ilyasov, I. G. Popova, I. V. Ershov. Applied Surface Science. 419, 924 (2017). Crossref
11. V. V. Ilyasov, I. G. Popova, I. V. Ershov, N. D. Chien, N. N. Hieu, Ch. V. Nguyen. Diamond & Related Materials. 74, 31 (2017). Crossref
12. V. V. Ilyasov, B. Ch. Meshi, I. G. Popova, Ch. V. Nguyen, I. V. Ershov, N. D. Chien. Springer Proceedings in Physics. 175, 279 (2016). Crossref
13. V. V. Ilyasov, O. M. Holodova, I. G. Popova, I. P. Gritsay, I. V. Ershov. Applied Surface Science. 462, 772 (2018). Crossref
14. A. V. Blagin, V. V. Nefedov, N. A. Nefedova. IOP Conf. Ser.: Earth Environ. Sci. 87 (9), 092005 (2017). Crossref
15. A. V. Blagin, V. V. Nefedov, N. A. Nefedova. Proceedings of the International Conference “Actual Issues of Mechanical Engineering” (AIME 2018). Advances in Engineering Research. Atlantis Press. 157, 95 (2018). Crossref
16. R. Manijeh. Fundamentals of Solid State Engineering. 3rd ed. Springer (2009) 758 p. Crossref
17. E. Neyts, A. Bogaerts, M. C. M. van de Sanden. High Temperature Material Processes. 13 (3-4), 399 (2009). Crossref
18. A. V. Osipov. Phys.Chem.Mech.Surfaces. 8, 34 (1991). (in Russian) [А. В. Осипов. Поверхность. Физика, химия, механика. 8, 34 (1991).].
19. G. V. Dubrovsky, V. V. Kozachek. Colloid Journal. 56 (3), 356 (1994). (in Russian) [Г. В. Дубровский, В. В. Козачек. Коллоидный журнал. 56 (3), 356 (1994).].
20. S. V. Kolesnikov, A. M. Saletsky, S. A. Dokukin, A. L. Klavsyuk Mat. Modeling. 30 (2), 48 (2018). (in Russian) [С. В. Колесников, А. М. Салецкий, С. А. Докукин, А. Л. Клавсюк. Матем. Моделирование. 30 (2), 48 (2018).].