The concept of quasineutrons and the synthesis of zinc from the extraction of a part of the material of copper electrodes during electric current discharges in an aqueous solution of NaCl

M.P. Kashchenko, V.F. Balakirev, N.M. Kashchenko, M.B. Smirnov, Y.L. Chepelev, V.V. Ilyushin, N.V. Nikolaeva, V.G. Pushin show affiliations and emails
Received 21 June 2020; Accepted 08 September 2020;
Citation: M.P. Kashchenko, V.F. Balakirev, N.M. Kashchenko, M.B. Smirnov , Y.L. Chepelev, V.V. Ilyushin, N.V. Nikolaeva, V.G. Pushin. The concept of quasineutrons and the synthesis of zinc from the extraction of a part of the material of copper electrodes during electric current discharges in an aqueous solution of NaCl. Lett. Mater., 2020, 10(4) 486-490
BibTex   https://doi.org/10.22226/2410-3535-2020-4-486-490

Abstract

Energy spectrum of the main elements in the material:
a) electrodes (technical copper); b) particles of sediment powder containing zinc (particle 2 in Table 1)For aqueous solutions during the flow of intense electric currents, the formation of quasineutrons (p + e), bound states of protons p and electrons e, should be typical. Then, as the simplest products of nuclear reactions, one can expect the formation of elements that are adjacent (in the periodic table) to the elements in the electrodes. In the experimental setup, pulsed electrical discharges are carried out in an aqueous solution of NaCl with a concentration of 0.1 g / l using an oscillatory circuit tuned to resonance with the supply voltage (220 V, 50 Hz). As a material for hollow tubular electrodes, commercial copper was used. The starting potential difference is 650 V. The discharges were accompanied by precipitation. Along with the products of erosion of electrodes (Cu), there are particles with a significant proportion of zinc, the content of which varies widely, sometimes exceeding the copper content. This result testifies in favor of the existence of quasineutron states allowing the proton to approach distances of the order of the critical radius Rc~10−13 m for capturing the proton by the copper core. Particles containing nickel along with copper and zinc were also found. This can indicate both electronic capture with the formation of the Ni63 isotope (half-life T ≈100 years) and capture of the quasineutron with the formation of Cu64 (T ≈12.7 hours) followed by electronic capture and the formation of Ni64. The abundance of particles containing zinc (without Ni) demonstrates the preference for proton capture.

References (20)

1. V. F. Balakirev, V. V. Krymskiy, B. V. Bolotov et al. Interconversion of chemical elements. Ekaterinburg, UB RAS (2003) 97 p. (in Russian) [В. Ф. Балакирев, В. Крымский, Б. В. Болотов и др. Взаимопревращения химических элементов. Екатеринбург, УрО РАН (2003) 97с.].
2. M. P. Kashchenko, V. F. Balakirev. Letters on Materials. 7 (4), 380 (2017). Crossref
3. M. P. Kashchenko, V. F. Balakirev. Letters on Materials. 8 (2), 152 (2018). (in Russian) [М. П. Кащенко, В. Ф. Балакирев. Письма о материалах. 8 (2), 152 (2018).]. Crossref
4. V. A. Pan'kov, B. P. Kuzmin, Actual problems of modern science. (5), 117 (2008). (in Russian) [В. А. Паньков, Б. П. Кузьмин, Актуальные проблемы современной науки. (5), 117 (2008).].
5. M. P. Kashchenko, V. F. Balakirev, N. M. Kashchenko, M. B. Smirnov, Yu. L. Chepelev, V. V. Ilushin, N. V. Nikolaeva, V. G. Pushin. Letters on Materials. 10 (1), 66 (2020). (in Russian) [М. П. Кащенко, В. Ф. Балакирев, Н. М. Кащенко, М. Б. Смирнов, Ю. Л. Чепелев, В. В. Илюшин, Н. В. Николаева, В. Г. Пушин. Письма о материалах. 10 (1), 66 (2020).]. Crossref
6. M. P. Kashchenko, N. M. Kashchenko. Letters on Materials. 9 (3), 316 (2019). (in Russian) [М. П. Кащенко, Н. М. Кащенко. Письма о материалах. 9 (3), 316 (2019).]. Crossref
7. M. P. Kashchenko, N. M. Kashchenko. Letters on Materials. 10 (3), 266 (2020). (in Russian) [М. П. Кащенко, Н. М. Кащенко. Письма о материалах. 10 (3), 266 (2020).]. Crossref
8. M. M. Krishtal., I. S. Yasnikov et al. The world of physics and technology. Scanning electron microscopy and X-ray microanalysis in practical examples. Moscow, Publishing house “Technosphere” (2009) 208 p. (in Russian) [М. М. Криштал., И. С. Ясников и др. Мир физики и техники. Сканирующая электронная микроскопия и рентгеноспектральный микроанализ в примерах практического применения. Москва, Изд-во «Техносфера» (2009) 208с.].
9. Таble of Nuclides. Retrieved from the website: http://atom.kaeri.re.kr:8080/ton/index.html.
10. R. M. Santilli. International Journal of Applied Physics and Mathematics. 9 (2), 72 (2019). Crossref
11. I. M. Kapitonov. Introduction to the physics of nuclei and particles. Moscow, LENAND (2017) 544 p. (in Russian) [И. М. Капитонов. Введение в физику ядра и частиц. Mосква, ЛЕНАНД (2017) 544 с.].
12. M. G. Inghram, D. C. Hess Jr., R. J. Hayden. Phys. Rev. 71, 561 (1947). Crossref
13. K. Hoffmann. Kann man gold machen? Gauner, gaukler und gelehrte: aus der geschichte der chemischen elemente. Leipzig, Urania, Verlag (1982) 256 p.
14. R. M. Santilli. Foundations of Hadronic Chemistry. With Applications to New Clean Energies and Fuels. London, Kluwer Academic Publishers (2001) 554 p. Crossref
15. R. Norman, A. A. Bhalekar, S. Beghella, B. B. Buckley, J. Dunning-Davies, J. Rak, R. M. Santilli. American Journal of Modern Physics. 6 (4-1), 85 (2017). Crossref
16. D. D. Afonichev, T. I. Nazarova. Letters on Materials. 7 (1), 17 (2017). (in Russian) [Д. Д. Афоничев, Т. И. Назарова. Письма о материалах. 7 (1), 17 (2017).]. Crossref
17. M. Fleischmann, S. Pons, M. Hawkins. J. Electroanal. Chem. 261, 301 (1989). Crossref
18. V. I. Dubinko, D. V. Laptev. Letters on Materials. 6 (1), 16 (2016). Crossref
19. S. Focardi, A. Rossi. Journal of Nuclear Physics. February 28 (2010).
20. A. G. Parkhomov. International Journal of Unconventional Science. 3 (7), 68 (2015).

Funding

1. Ministry of Science and Higher Education of the Russian Federation - state assignment No. 075-00243-20-01 of 08/26/2020 within the framework of the FEUG-2020-0013 theme "Environmental aspects of rational nature management".