The effect of the occurrence of a magnetic field of a current loop in hybrid graphene / C60 carbon systems

O.E. Glukhova, V.V. Mitrofanov, M.M. Slepchenkov ORCID logo show affiliations and emails
Received 29 July 2020; Accepted 19 August 2020;
Citation: O.E. Glukhova, V.V. Mitrofanov, M.M. Slepchenkov. The effect of the occurrence of a magnetic field of a current loop in hybrid graphene / C60 carbon systems. Lett. Mater., 2020, 10(4) 491-495
BibTex   https://doi.org/10.22226/2410-3535-2020-4-491-495

Abstract

The conditions for the appearance of a circular current during the ordered motion of the C60 fullerene on graphene with a defect in the form of local hydrogenation of the atomic network are found. The defect should form a bowl-shaped well in the energy surface of interaction of C60 with graphene, along the edges of which the fullerene will make a circular motion.In this article, using in silico methods we investigate the simultaneous effect of temperature, external electric field, and structural defects of graphene atomic network on the patterns of positioning of the C60 molecule on a graphene sheet. The conditions for the appearance of a circular current on graphene during the ordered motion of a charged C60 fullerene controlled by regularly adsorbed hydrogen atoms and external electric field are found. Numerical experiments are carried out using the molecular dynamics and the self-consistent charge density functional tight-binding (SCC-DFTB) method. It is found that at a temperature of 175 K and an electric field strength of 1∙106 V / m, the circular current value is ~10.4 nA. The magnetic field induced by the circular current is 6.2 μT. It is shown that the appearance of a circular current is caused by two most important factors: the arrangement of hydrogen atoms on graphene and the temperature. A defect in the form of chemically adsorbed hydrogen atoms should form a bowl-shaped well in the energy surface of interaction of C60 with grapheme, along the edges of which the fullerene will make a circular motion. As a way to amplify the circular current and induced magnetic field, it is proposed to vary the size of the local hydrogenation region of graphene. The external electric field directs the charged fullerene C60 to the defect region. It is predicted that the detected physical effect can be the basis for operation of new miniature magnetic field sources for various nanodevices.

References (26)

1. M. Chen, R. Guan, S. Yang. Adv. Sci. 6, 1800941 (2018). Crossref
2. X. Yu, Z. Dong, J. K. W. Yang, Q. J. Wang. Optica. 3, 979 (2016). Crossref
3. E. K. Jeon, C. S. Yang, Y. Shen, T. Nakanishi, D. S. Jeong, J. J. Kim, K. S. Ahn, K. J. Kong, J. O. Lee. Nanotechnology. 23, 455202 (2012). Crossref
4. K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, Z. Bao. ACS Nano. 9, 5922 (2015). Crossref
5. R. Wang, S. Wang, X. Wang, J. A. S. Meyer, P. Hedegard, B. W. Laursen, Z. Cheng, X. Qiu. Small. 9, 2420 (2013). Crossref
6. J. Ma, Q. Guo, H. L. Gao, X. Qin. Fuller. Nanotub. Car. N. 23, 477 (2014). Crossref
7. M. Chen, H. Zhou, F. Yu, H. Yang, G. Wang, J. He, L. Sun. Nanoscale. 5, 8359 (2013). Crossref
8. C. Chen, H. Zheng, A. Mills, J. R. Heflin, C. Tao. Sci Rep. 5, 14336 (2015). Crossref
9. W. Koh, H. S. Moon, S. G. Lee, J. I. Choi, S. S. Jang. ChemPhysChem. 16, 789 (2015). Crossref
10. A. K. Manna, S. K. Pati. ChemPhysChem. 14, 1844 (2013). Crossref
11. L. A. Chernozatonskii, A. G. Kvashnin, P. B. Sorokin. Nanotechnology. 27, 365201 (2016). Crossref
12. M. Shibuta, K. Yamamoto, T. Ohta, M. Nakaya, T. Eguchi, A. Nakajima. Sci. Rep. 6, 35853 (2016). Crossref
13. G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, T. F. Heinz. ACS Nano. 9, 7175 (2015). Crossref
14. C. Bautista-Flores, R. Y. Sato-Berru, D. Mendoza. Appl. Phys. Lett. 105, 191116 (2016). Crossref
15. C. Ojeda-Aristizabal, E. J. G. Santos, S. Onishi, A. Yan, H. I. Rasool, S. Kahn, Y. Lv, D. W. Latzke, J. Velasco Jr, M. F. Crommie, M. Sorensen, K. Gotlieb, C. Y. Lin, K. Watanabe, T. Taniguchi, A. Lanzara, A. Zettl. ACS Nano. 11, 4686 (2017). Crossref
16. A. Savin, Y. Kivshar. Transport of fullerene molecules along graphene nanoribbons. Sci Rep. 2, 1012 (2012). Crossref
17. M. Jafary-Zadeh, C. Reddy, V. Sorkin, Y. W. Zhang. Nanoscale Res. Lett. 7, 148 (2012). Crossref
18. M. Jafary-Zadeh, C. D. Reddy, Y. W. Zhang. J. Phys. Chem. C. 117, 6800 (2013). Crossref
19. M. Jafary-Zadeh, Y. Zhang. Molecular mobility on graphene nanoroads. Sci. Rep. 5, 12848 (2015). Crossref
20. V. V. Shunaev, G. V. Savostyanov, M. M. Slepchenkov, O. E. Glukhova. RSC Adv. 5, 86337 (2015). Crossref
21. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert. Phys. Rev. B. 58, 7260 (1998). Crossref
22. D. C. Rapaport. The art of molecular dynamics simulation. Cambridge University Press, Cambridge (2004) 549 p. Crossref
23. L. Verlet. Phys. Rev. 159, 98 (1967). Crossref
24. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak. J. Chem. Phys. 81, 3684 (1984). Crossref
25. O. E. Glukhova. In: Thermal Transport in Carbon-Based Nanomaterials (ed. by Gang Zhang). Elsevier, Netherlands (2017) pp. 267 - 289. Crossref
26. E. M. Purcell, D. J. Morin. Electricity and Magnetism. Harvard University, Massachusetts (2013) 839 p. Crossref

Funding

1. Ministry of Science and Higher Education of the Russian Federation in the framework of the government task - FSRR-2020-0004