The effect of doping on the electronic structure and optical properties of silicon biprismanes: DFT and TD-DFT studies

M. Salem, M.A. Gimaldinova, A.I. Kochaev ORCID logo , M.M. Maslov show affiliations and emails
Received 18 April 2020; Accepted 11 May 2020;
Citation: M. Salem, M.A. Gimaldinova, A.I. Kochaev, M.M. Maslov. The effect of doping on the electronic structure and optical properties of silicon biprismanes: DFT and TD-DFT studies. Lett. Mater., 2020, 10(3) 294-298
BibTex   https://doi.org/10.22226/2410-3535-2020-3-294-298

Abstract

Relative intensities of UV-Vis spectra of silicon biprismanes strongly depend on doping. In particular, doping with methyl radicals and fluorine atoms provides prevalent adsorption intensities of octagonal and hexagonal biprismanes, respectively.We present the results of a study of three-layered silicon biprismanes doped with methyl radicals and fluorine atoms by means of the density functional theory. Pentagonal, hexagonal, heptagonal, and octagonal doped systems were simulated in this study. We found that larger biprismanes demonstrate weaker interaction with dopants because they are less strained, and their surfaces are “flatter”. The weakening of interaction manifests itself by elongation of bond lengths between the silicon cage and the attached radicals. However, the energy gain / loss due to the reaction of substitutional doping is practically independent of the size of the system. The calculated partial Mulliken charges of fluorine atoms are about −0.3 of elementary charges. The corresponding value for methyl radicals is approximately three times smaller. HOMO-LUMO gaps of doped biprismanes demonstrate oscillations with increasing biprismane diameter with a general downward trend. The value of the gaps of the doped biprismanes is in the range from 2 to 3 eV and slightly differs from the gaps of the pristine biprismanes. The optical properties and excited states of doped biprismanes were calculated using the time-dependent density functional theory. Ultra-violet and visible spectra were determined for all considered systems. The absorption frequencies slightly depend on the radical type and the size of the system. However, the presence of radicals results in significant changes in the relative adsorption intensities of biprismanes with different shapes. We found that doping with methyl radicals and fluorine provided prevalent adsorption intensities of octagonal and hexagonal biprismanes, respectively. The observed effect can be used for optical detection of biprismanes with specific shapes or diameters in their mixture with other silicon structures.

References (34)

1. M. A. Gimaldinova, K. P. Katin, M. A. Salem, M. M. Maslov. Lett. Mater. 8 (4), 454 (2018). Crossref
2. V. Blank, M. Popov, S. Buga, V. Davydov, V. N. Denisov, A. N. Ivlev, B. N. Marvin, V. Agafonov, R. Ceolin, H. Szwarc, A. Rassat. Physics Letters A. 188 (3), 281 (1994). Crossref
3. V. D. Blank, S. G. Buga, G. A. Dubitsky, N. R. Serebryanaya, M. Yu. Popov, B. Sundqvist. Carbon. 36 (4), 319 (1998). Crossref
4. G.-L. She, F.-G. Yuan, B. Karami, Y.-R. Ren, W.-S. Xiao. International Journal of Engineering Science. 135, 58 (2019). Crossref
5. Z. Ma, J. Yang, L. Wang, L. Shi, P. Li, G. Chen, C. Miao, C. Mei. Journal of Alloys and Compounds. 745, 688 (2018). Crossref
6. Ç. Kılıç, T. Yildirim, H. Mehrez, S. Ciraci. J. Phys. Chem. A. 104 (12), 2724 (2000). Crossref
7. T. J. Katz, N. Acton. J. Am. Chem. Soc. 95 (8), 2738 (1973). Crossref
8. P. E. Eaton, Y. S. Or, S. J. Branca. J. Am. Chem. Soc. 103 (8), 2134 (1981). Crossref
9. H. Matsumoto, K. Higuchi, S. Kyushin, M. Goto. Angewandte Chemie International Edition in English. 31 (10), 1354 (1992). Crossref
10. N. Koshida, N. Matsumoto. Materials Science and Engineering: R: Reports. 40 (5), 169 (2003). Crossref
11. L. V. Duong, E. Matito, M. Solà, H. Behzadi, M. T. Nguyen, M. J. Momeni. Phys. Chem. Chem. Phys. 20, 23467 (2018). Crossref
12. K. P. Katin, K. S. Grishakov, M. A. Gimaldinova, M. M. Maslov. Comp. Mat. Sci. 174, 109480 (2020). Crossref
13. H. Vach. Phys. Rev. Lett. 112 (19), 197401 (2014). Crossref
14. K. P. Katin, S. A. Shostachenko, A. I. Avkhadieva, M. M. Maslov. Adv. Phys. Chem. 2015, 506894 (2015). Crossref
15. L. K. Rysaeva, D. S. Lisovenko, V. A. Gorodtsov, J. A. Baimova. Comp. Mat. Sci. 172, 109355 (2020). Crossref
16. L. K. Rysaeva, J. A. Baimova, S. V. Dmitriev, D. S. Lisovenko, V. A. Gorodtsov, A. I. Rudskoy. Diamond and Related Materials. 97, 107411 (2019). Crossref
17. K. P. Katin, M. M. Maslov. Adv. Cond. Matt. Phys. 2015, 754873 (2015). Crossref
18. H.-T. Huang, L. Zhu, M. D. Ward, T. Wang, B. Chen, B. L. Chaloux, Q. Wang, A. Biswas, J. L. Gray, B. Kuei, G. D. Cody, A. Epshteyn, V. H. Crespi, J. V. Badding, T. A. Strobel. J. Am. Chem. Soc. (2020). Crossref
19. M. M. Maslov, K. P. Katin, A. I. Avkhadieva, A. I. Podlivaev. Russ. J. Phys. Chem. B. 8 (2), 152 (2014). Crossref
20. L. Zhou, G. Zhang, F. Xiu, S. Xia, L. Yu. RSC Advances. 10 (15), 8618 (2020). Crossref
21. K. Flanagan, S. S. R. Bernhard, S. Plunkett, M. O. Senge. Chemistry. A European Journal. 25 (28), 6941 (2019). Crossref
22. B. Huang, L. Zhuang, L. Xiao, J. Lu. Chem. Sci. 4 (2), 606 (2013). Crossref
23. A. Equbal, S. Srinivasan, N. Sathyamurthy. J. Chem. Sci. 129 (7), 911 (2017). Crossref
24. M. M. Maslov, K. S. Grishakov, M. A. Gimaldinova, K. P. Katin. Fullerenes, Nanotubes and Carbon Nanostructures. 28, 97 (2019). Crossref
25. K. P. Katin, M. M. Maslov. Molecular Simulation. 44 (9), 703 (2018). Crossref
26. S. A. Shostachenko, M. M. Maslov, V. S. Prudkovskii, K. P. Katin. Phys. Sol. State. 57 (5), 1023 (2015). Crossref
27. H. Vach. Chem. Phys. Lett. 614, 199 (2014). Crossref
28. K. P. Katin, M. B. Javan, M. M. Maslov, A. Soltani. Chem. Phys. 487, 59 (2017). Crossref
29. K. P. Katin, V. S. Prudkovskiy, M. M. Maslov. Physica E: Low-Dimensional Systems and Nanostructures. 81, 1 (2016). Crossref
30. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery. J. Comp. Chem. 14 (11), 1347 (1993). Crossref
31. A. D. Becke. J. Chem. Phys. 98 (7), 5648 (1993). Crossref
32. C. Lee, W. Yang, R. G. Parr. Phys. Rev. B. 37 (2), 785 (1988). Crossref
33. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople. J. Chem. Phys. 72 (1), 650 (1980). Crossref
34. V. S. Prudkovskiy, K. P. Katin, M. M. Maslov, P. Puech, R. Yakimova, G. Deligeorgis. Carbon. 109, 221 (2016). Crossref

Funding

1. Russian Science Foundation - Grant No. 18-72-00183