Preparation of CdSe / RGO-GO composites with the high performance of adsorption and degradation

J.C. Sun, Z.C. Bai, Z.L. Huang, Z.P. Zhang show affiliations and emails
Received: 31 January 2020; Revised: 14 March 2020; Accepted: 19 March 2020
Citation: J.C. Sun, Z.C. Bai, Z.L. Huang, Z.P. Zhang. Preparation of CdSe / RGO-GO composites with the high performance of adsorption and degradation. Lett. Mater., 2020, 10(2) 200-205


A photocatalyst was prepared successfully by a simple organic synthesis method.Nowadays, dyes are usually chemically stable, can not be degraded naturally within a short time, and easy to migrate along with water, which is the main source to influence the health of human beings and to destroy the ecosystem. Based on that, in this work a high-performance photocatalyst was prepared successfully by an organic synthesis method. The obtained photocatalyst contained numerous nanoscale heterojunctions, which consisted of CdSe nanoparticles scattered on the partially reduced graphene oxide (named as CdSe / RGO-GO). The samples were characterized by photoluminescence spectra (PL), transmission electron microscopy (TEM), and ultraviolet and visible spectrophotometry (UV-vis). The photocatalytic activity was evaluated by the degradation of organic dyes Rhodamine B (RhB) aqueous solution under irradiation of visible light and no light. Results show that the degradation efficiency of nanocomposites was 84.4 % in the first 10 minutes under darkness. After 50 minutes of visible light irradiation, the degradation efficiency was 94 %. The high degradation efficiency of photocatalysts attributes to the synergistic effect of graphene oxide adsorption and heterojunctions catalysis. CdSe / RGO-GO photocatalyst reported in this paper has a series of advantages, such as pollution-free, recyclability, stability, and insolubility in water. The preparation of CdSe / RGO-GO composites has potential applications in curbing pollution.

References (21)

1. Y. Landkocz, F. Ledoux, V. Andr, F. Cazier, P. Genevray, D. Dewaele, P. J. Martin, C. Lepers, A. Verdin, L. Courcot, S. Boushina, F. Sichel, M. Gualtieri, P. Shirali, D. Courcot, S. Billet. Environmental pollution. 221, 130 (2017). Crossref
2. M. Tobler, Z. W. Culumber. Science. 354, 1232 (2016). Crossref
3. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Science. 293, 269 (2001). Crossref
4. D. H. Cui, Y. F. Zheng, X. C. Song. Journal of Alloys and Compounds. 701, 163 (2017). Crossref
5. S. K. Mohapatra, N. Kondamudi, S. Banerjee, M. Misra. Langmuir. 24 (19), 11276 (2008). Crossref
6. W. Zhu, F. Sun, R. Goei, Y. Zhou. Applied Catalysis B: Environmental. 207, 93 (2017). Crossref
7. H. Tong, O. Shuxin, B. Yingpu, U. Naoto, O. Mitsutake, Y. Jinhua. Advanced materials. 24, 229 (2012). Crossref
8. W. Xiaofeng, P. Jiaqi, W. Song, M. Jie, Z. Yingying, C. Can, L. Chaorong. Journal of Materials Science: Materials in Electronics. 28, 14079 (2017). Crossref
9. S. Gayathri, P. Jayabal, M. Kottaisamy, V. Ramakrishnan. Journal of Applied Physics. 115, 173504 (2014). Crossref
10. Y. H. Ding, P. Zhang, Q. Zhuo, H. M. Ren, Z. M. Yang, Y. Jiang. Nanotechnology. 22, 215601 (2011). Crossref
11. S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, Z. Mi. Nano Futures. 1, 022001 (2017). Crossref
12. J. M. Carlsson. Nature Materials. 6, 801 (2007). Crossref
13. A. Fasolino, J. H. Los, M. I. Katsnelson. Nature materials. 6, 858 (2007). Crossref
14. S. Pei, H. M. Cheng. Carbon. 50, 3210 (2012). Crossref
15. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li. ACS Nano. 4, 380 (2009). Crossref
16. L. Xiao, Y. Wang, S. Yu, Y. Tang. Progress in Chemistry. 25 (2), 419 - 430. Z1 (2013).
17. T. Ghosh, J. Lee, Z. Meng, K. Ullah, C. Park, V. Nikam, W. Oh. Materials Research Bulletin. 48, 1268 (2013). Crossref
18. K. Ullah, J. Sun-Bok, S. Ye, L. Zhu, G. Mukhopadhyay, W. C. Oh. Fullerenes, Nanotubes and Carbon Nanostructures. 23, 437 (2015). Crossref
19. W. Oh, M. Chen, K. Cho, C. Im, Z. Meng, L. Zhu. Chinese Journal of Catalysis. 32, 1577 (2011). Crossref
20. M. Zhou, J. Li, Z. Ye, C. Ma, H. Wang, P. Huo, W. Shi, Y. Yan. ACS applied materials & interfaces. 7, 28231 (2015). Crossref
21. N. Thirugnanam, H. Song, Y. Wu. Chinese Journal of Catalysis. 38, 2150 (2017). Crossref


1. the projects of the National Natural Science Foundation of China - 61865002
2. Central Guide to Local Science and Technology Development - QKZYD[2018]4009
3. Anhui province higher education promotion plan - TSKJ2017B30