Field ion microscopy of nanoblocks on the surface of metals after irradiation argon ion beams

Received: 26 October 2017; Revised: 10 November 2017; Accepted: 14 November 2017
This paper is written in Russian
Citation: V.A. Ivchenko. Field ion microscopy of nanoblocks on the surface of metals after irradiation argon ion beams. Lett. Mater., 2018, 8(1) 48-53


Field neon image atomic clean and atomic smooth the surface of platinum single crystal before irradiation, with the corresponding stereographic projection.

By irradiation of the single crystal Pt beams of charged Ar+ ions are able to obtain nano-structured state of the material under certain modes in the near-surface volume of the nano meter range.The interaction of metal (Pt) with beams accelerated to energy E=30 keV positive ions of argon, and a fluence of F = 1016, and 1017 ion/cm2 at ion current densities of 150 A/cm2 (T=70°C) and 200 A/cm2 (T=200°C), respectively, were detected education effect of nano blocks. The analysis of the surface modification, the subsurface volume and boundary area of nano blocks on the basis of the results obtained by the method of field ion microscopy. It is assumed that the contrast boundary areas nano blocks correspond to the atomic structure of depleted zones. For a fluence of F = 1016 ion/cm2 nano blocks was observed in the layer with thickness ~ 1.5 nm from the irradiated surface. With increasing fluence up to F=1017 ion/cm2 the effect of the formation of nano crystalline block structure (with blocks of size 1-5 nm) is observed in the near-surface volume thickness of not less than 20 nm from the irradiated surface. From the analysis of experimental data, the mechanism of formation of such zones is more likely associated with the effect of channeling. The dimensions of the nano blocks had defined on the irradiated surface Pt and subsurface volume of material. On the surface after irradiation with a fluence of 1016 ion/cm2, the proportion of units with an average size of 1 nm was 60%. The average size of the blocks ranged from 1-5 nanometers with increase in distance up to 20 nm in depth.

References (8)

1. Surface Modification and Alloying by Laser, Ion, and Electron Beams, ed. by J. M. Poate, G. Foti, and D. Jacobson, M.: mechanical engineering (1987) 424. (in Russian) [Мо­дифицирование и легирование поверхности лазерными, ионными и электронными пучками / Под ред. Дж. Поута, Г. Фоти и Д. Джекобсона, М.: Машиностроение (1987) 424].
2. V. V. Ovchinnikov. Izvestiay RAN. Metalli. 6. 104 (1996). (in Russian) [В. В. Овчинников. Известия РАН. Металлы. 6. 104 (1996)].
3. V. A. Ivchenko. Research of nanostructure states of materials after intensive external influences by atom probe FIM methods. 9th International Symposium of Croatian Metallurgical Society* S H M D ’2010. Šibenik, June 20 - 24, 212 (2010).
4. V. A. Ivchenko, E. V. Medvedeva, V. V. Ovchinnikov. Poverkhnost, Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya. 8. 26 (2009). (in Russian) [В. А. Ивченко, Е. В. Медведева, В. В. Овчинников. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 8, 26 (2009)].
5. M. Nastasi, J. W. Mayer, J. K. Hirvonen. Ion-Solid Interactions: Fundamentals and Applications. - Cambridge: Cambridge Solid State Science Series, Cambridge University Press XXVII. (1996) 540.
6. V. A. Ivchenko. Technical physics letters. 40. Is., 4. 323 - 325 (2014). Crossref
7. V. A. Ivchenko, B. M. Efros, E. V. Popova, N. B. Efros, L. V. Loladze. Physics and technique of high pressures. 13 (3). 109 - (2003). (in Russian) [В. А. Ивченко, Б. М. Эф­рос, Е. В. Попова, Н. Б. Эфрос, Л. В. Лоладзе. Физика и техника высоких давлений. 13 (3). 109 (2003)].
8. B. M. Efros, E. V. Popova, N. B Efros, V. A. Ivchenko, V. N. Varyukhin. Metals. 6. 31 (2005). (in Russian) [Б. М. Эфрос, Е. В Попова, Н. Б. Эфрос, В. А. Ивченко, В. Н. Варюхин. Металлы, 6. 31 (2005)].

Cited by (1)

H. Zhen, H. Wang, X. Xu. Materials Letters. 249, 210 (2019). Crossref