About the temperature of polymorphic phase transformation of austenite into ferrite of 12% chromium steel

E.K. Nesterenko, A.S. Kudryavtsev, A.Y. Askinazi, N.B. Gromova, N.F. Drozdova show affiliations and emails
Received 27 November 2019; Accepted 23 March 2020;
This paper is written in Russian
Citation: E.K. Nesterenko, A.S. Kudryavtsev, A.Y. Askinazi, N.B. Gromova, N.F. Drozdova. About the temperature of polymorphic phase transformation of austenite into ferrite of 12% chromium steel. Lett. Mater., 2020, 10(3) 237-242
BibTex   https://doi.org/10.22226/2410-3535-2020-3-237-242

Abstract

Limitation of the heating temperature for hot plastic deformation on the basis of studies of the temperature of phase transformation of austenite into δ-ferrite (Ac4).Determining the temperature of the polymorphic phase transformation of austenite into δ-ferrite (Ac4) is of great practical importance for ensuring deformability during hot plastic deformation of high-chromium martensitic and martensitic-ferrite steels, as it allows to exclude the formation of cracks in the steel billet during deformation. By limiting the heating temperature for hot plastic deformation, it is possible to prevent the segregation of δ-ferrite, the formation of which leads to the appearance of cracks along the boundaries of its section with austenite. In this article, the temperature of phase transformation was determined for the steel grade 07‑Cr12‑Ni-Mo-V-Nb martensitic ferritic class. Three industrial smelting with different content of alloying elements within the steel grade composition were investigated. Ac4 temperature was determined by differential scanning calorimetry (DSC), X-ray phase analysis and dilatometric method. Dilatometric and DSC studies were conducted under the same heating rate and showed similar results in the temperature range 1155 –1181°C for all smelting. The temperature of transformation of austenite into δ-ferrite under continuous heating is identified more clearly as a result of measuring the heat flow of the DSC method than by measuring the elongation of the sample by the dilatometric method. X-ray phase analysis showed lower temperature values <1150°C, however, they can be considered the most accurate, since this method is a direct method for determining the phase composition of materials due to the comparability of the wavelength of the X-ray radiation and the size of the crystal lattice, thereby obtaining diffraction reflections not from atoms, but from different planes of the crystal lattices. The increased values of DSC and the dilatometric method are associated with continuous heating, during which the fixation of the phase transformation temperature occurs in the presence of a certain content of the new phase. Thus, as a result of research it is established that the temperature of heating for hot plastic deformation should not exceed the temperature of 1150°C.

References (18)

1. Patent RF № 2013127543/02, 17.06.2013. (in Russian) [Патент РФ № 2013127543/02, 17.06.2013].
2. S. L. Lyakishev, V. V. Denisov, M. D. Lyakisheva, V. A. Chaban, A. A. Khalutin, A. N. Blokhina, N. V. Zharov, V. A. Usachev. Problems of atomic science and technology. 34, 113 (2014). (in Russian) [С. Л. Лякишев, В. В. Денисов, М. Л. Лякишева, В. А. Чабан, А. А. Халутин, А. Н. Блохина, Н. В. Жаров, В. А. Усачев. Вопросы атомной науки и техники. 34, 113 (2014).].
3. G. P. Karzov, A. S. Kudriavtsev, V. G. Markov, R. N. Grishmanovskaya, Yu. M. Trapeznikov, M. A. Ananieva. Voprosy Materialovedeniya. 2 (82), 23 (2015). (in Russian) [Г. П. Карзов, А. С. Кудрявцев, В. Г. Марков, Р. Н. Гришмановская, Ю. М. Трапезников, М. А. Ананьева. Вопросы материаловедения. 2 (82), 23 (2015).].
4. D. A. Artemieva, G. P. Karzov, A. S. Kudriavtsev, V. G. Markov, S. A. Suvorov, S. I. Brykov, V. V. Denisov, S. Yu. Korolev, M. S. Metalnikov. Problems of atomic science and technology. 34, 53 (2014). (in Russian) [Д. А. Артемьева, Г. П. Карзов, А. С. Кудрявцев, В. Г. Марков, С. А. Суворов, С. И. Брыков, В. В. Денисов, С. Ю. Королев, М. С. Метальников. Вопросы атомной науки и техники. 34, 53 (2014).].
5. R. L. Klueh, A. T. Nelson. Journal of Nuclear Materials. 371, 37 (2007). Crossref
6. A. S. Kudriavtsev, D. A. Artemieva, P. Ya. Rayner. Voprosy Materialovedeniya. 3 (79), 34 (2014). (in Russian) [А. С. Кудрявцев, Д. А. Артемьева, П. Я. Рейнер. Вопросы материаловедения. 3 (79), 34 (2014).].
7. M. Ya. Dzugutov. Plasticheskaya deformatsiya vysokolegirovannykh staley i splavov. Moscow, Metallurgiya (1977) 479 p. (in Russian) [М. Я. Дзугутов. Пластическая деформация высоколегированных сталей и сплавов. Металлургия, Москва (1977) 479 c.].
8. K. A. Lanskaya. Vysokokhromistyye zharoprochnyye stali. Moscow, Metallurgiya (1976) 216 p. (in Russia) [К. А. Ланская. Высокохромистые жаропрочные стали. Москва. Металлургия (1976) 216 c.].
9. E. A. Krivonosova, E. A. Sinkina, O. A. Rudakova. Bulletin of Perm national research Polytechnic University. 13 (1), 32 (2011). (in Russian) [Е. А. Кривоносова, Е. А. Синкина, О. А. Рудакова. Вестник Пермского национального исследовательского политехнического университета. 13 (1), 32 (2011).].
10. L. M. Kaputkin, D. E. Kaputkin. Materials Science Forum. 426 - 432, 1119 (2003). Crossref
11. P. A. Leont’ev, Yu. N. Simonov, D. O. Panov. Industrial laboratory. Diagnostics of materials. 80 (6), 45 (2014). (in Russian) [П. А. Леонтьев, Ю. Н. Симонов, Д. О. Панов. Заводская лаборатория. Диагностика материалов. 80 (6), 45 (2014).].
12. D. V. Gadeev. Issledovaniye fazovykh prevrashcheniy metodami strukturnogo i termicheskogo analiza v dvukhfaznykh splavakh na osnove titana. Dissertacija na soiskanie stepeni kandidata tehnicheskih nauk. Ekaterinburg (2012) 171 p. (in Russian) [Д. В. Гадеев Исследование фазовых превращений методами структурного и термического анализа в двухфазных сплавах на основе титана: дисс. канд. техн. наук. Екатеринбург (2012) 171 с.].
13. A. L. Emelina. Differentsial'naya skaniruyushchaya kalorimetriya. Moscow, Moscow State University (2009) 42 p. (in Russian) [А. Л. Емелина. Дифференциальная сканирующая калориметрия. Москва, МГУ (2009) 42 с.].
14. R. L. Klueh, D. R. Harries. High-Chromium Ferritic and Martensitic Steels for Nuclear Applications. West Conshohocken, PA, ASTM International (2001) 228 p. Crossref
15. E. I. Razuvaev, M. M. Bakradze, S. A. Sidorov. Steel. 9, 58 (2016). (in Russian) [Е. И. Разуваев, М. М. Бакрадзе, С. А. Сидоров. Сталь. 9, 58 (2016).].
16. E. N. Kablov, G. S. Krivonogov. Metals. 2, 65 (2002). (in Russian) [Е. Н. Каблов, Г. С. Кривоногов. Металлы. 2, 65 (2002).].
17. L. J. Lieberman, A. V. Baeva. Metal science and metal processing. 6, 2 (1956). (in Russian) [Л. Я. Либерман, А. В. Баева. Металловедение и обработка металлов. 6, 2 (1956).].
18. I. V. Teplukhina, V. M. Golod, A. S. Tsvetkov. Latters on Materials. 1(8), 37 (2018). (in Russian) [И. В. Теплухина, В. М. Голод, А. С. Цветков. Письма о материалах. 1(8), 37 (2018).]. Crossref

Funding

1. Ministry of Education and Science of the Russian Federation - in the framework of agreement No. 14.595.21.0004, unique identifier RFMEFI59517X0004