Transmutation of a part of the extracted material of brass electrodes with pulses of electric current in an aqueous solution of NaCl

M.P. Kashchenko, V.F. Balakirev, N.M. Kashchenko, M.B. Smirnov, Y.L. Chepelev, V.V. Ilyushin, N.V. Nikolaeva, V.G. Pushin show affiliations and emails
Received 16 September 2019; Accepted 09 December 2019;
This paper is written in Russian
Citation: M.P. Kashchenko, V.F. Balakirev, N.M. Kashchenko, M.B. Smirnov, Y.L. Chepelev, V.V. Ilyushin, N.V. Nikolaeva, V.G. Pushin. Transmutation of a part of the extracted material of brass electrodes with pulses of electric current in an aqueous solution of NaCl. Lett. Mater., 2020, 10(1) 66-71
BibTex   https://doi.org/10.22226/2410-3535-2020-1-66-71

Abstract

Spherical particles extracted from the brass cathode (a) and the distribution map of elements (iron - (b), copper - (c), zinc - (d)), showing the dominance of iron in the particlesIn the electroplasma version of the electrolysis of water and aqueous solutions of salts, synthesis of a fairly wide range of chemical elements is observed. In the original installation, the erosion of the electrodes is not significant and the main contribution to the formation of chemical elements precipitated as a solid powder is their synthesis from the substances in the solution. On the contrary, in the simplified installation proposed for demonstrating the synthesis of elements, the erosion of the electrodes is significant. Therefore, it is considered that only elements (from the solid sediment) that are not included in the composition of electrodes are synthesized. Тo build up the experimental database, systematize and analyze them, we collected a simplified experimental set-up that allows for pulsed electrical discharges in water and aqueous salt solutions using an oscillatory circuit tuned to resonance with a supply voltage (220 V, 50 Hz). Aqueous solution of NaCl with a concentration of 0.1 g / l was used in this experiment. Brass was used as the material of the hollow tubular electrodes. The starting potential difference was 560 V. The gap between the electrodes was 0.7 mm. The electrodes were arranged vertically. Between the upper and lower vessels, the water moved by itself. Each series of discharges was accompanied by the appearance of a portion of a liquid of dark (black) color with subsequent precipitation. The analysis of the sediment showed that along with the products of simple erosion of the electrodes (Cu and Zn), there are synthesized elements (Mg, Si, S, Al, Fe and several others), which confirms the known data. In addition, spherical particles (with diameters of up to 1 μm) have been identified as the main component of which is Fe. The appearance of such particles most likely indicates the possibility of extracting the material from the region of local melting of the electrodes accompanied by copper and zinc transmutations. A discussion of the mechanism of transmutation shows that a significant difference in the isotopic composition of iron from the natural one can be expected.

References (20)

1. V. F. Balakirev, V. V. Krymskiy, B. V. Bolotov et al. Vzaimoprevrashcheniya khimicheskikh elementov. Yekaterinburg, UB RAS (2003) 97 p. (in Russian) [В. Ф. Балакирев, В. Крымский, Б. В. Болотов и др. Взаимопревращения химических элементов. Екатеринбург, УрО РАН (2003) 97 с.].
2. V. A. Pan'kov, B. P. Kuzmin. Aktual'nyye problemy sovremennoy nauki. 5, 117 (2008). (in Russian) [В. А. Паньков, Б. П. Кузьмин. Актуальные проблемы современной науки. 5, 117 (2008).].
3. M. P. Kashchenko, V. F. Balakirev. Letters on materials. 8 (2), 152 (2018). (in Russian) [М. П. Кащенко, В. Ф. Балакирев. Письма о материалах. 8 (2), 152 (2018).]. Crossref
4. M. P. Kashchenko, V. F. Balakirev. Letters on materials. 7 (4), 380 (2017). Crossref
5. M. M. Krishtal, I. S. Yasnikov et al. Mir fiziki i tekhniki. Skaniruyushchaya elektronnaya mikroskopiya i rentgenospektral'nyy mikroanaliz v primerakh prakticheskogo primeneniya. Moscow, Tekhnosfera (2009) 208 p. (in Russian) [М. М. Криштал, И. С. Ясников и др. Мир физики и техники. Сканирующая электронная микроскопия и рентгеноспектральный микроанализ в примерах практического применения. Москва, Техносфера (2009) 208 с.].
6. Таble of Nuclides. Retrieved from the website://http://atom.kaeri.re.kr:8080/ton/index.html.
7. M. P. Kashchenko, V. F. Balakirev, M. B. Smirnov, Yu. L. Chepelev, V. V. Ilushin, N. V. Nikolaeva, V. G. Pushin. The thirteenth international Ural seminar “Radiation damage physics of metals and alloys”. (February 24−March 2, Kyshtym, Russia) Abstracts. Yekaterinburg, IPM UB RAS (2019) p. 68. (in Russian) [М. П. Кащенко, В. Ф. Балакирев, М. Б. Смирнов, Ю. Л. Чепелев, В. В. Илюшин, Н. В. Николаева, В. Г. Пушин. Тринадцатый международный уральский семинар «Радиационная физика металлов и сплавов». (24 февраля − 2 марта, 2019, Кыштым, Россия). Тезисы докладов. Екатеринбург, ИФМ УрО РАН (2019) с. 68.].
8. M. P. Kashchenko, V. F. Balakirev, M. B. Smirnov, Yu. L. Chepelev, V. V. Ilushin, N. V. Nikolaeva, V. G. Pushin. International conference “Materials science of the future: research, development, scientific training” (February 12 - 14, 2019, Nizhni Novgorod, Lobachevsky University): Abstracts. Nizhni Novgorod, Nizhni Novgorod University Press (2019) p. 40.
9. M. P. Kashchenko, N. M. Kashchenko. Letters on materials. 9 (3), 316 (2019). (in Russian) [М. П. Кащенко, Н. М. Кащенко. Письма о материалах. 9 (3), 316 (2019).] DOI: doi.org/. Crossref
10. R. M. Santilli. Foundations of Hadronic Chemistry. With Applications to New Clean Energies and Fuels. London, Kluwer Academic Publishers (2001) 554 p.
11. H. Haken. Zs. Phys. 181, 96 (1964). Crossref
12. R. H. Dicke. Phys. Rev. 93, 99 (1954). Crossref
13. R. Norman, A. A. Bhalekar, S. Beghella, B. B. Buckley, J. Dunning-Davies, J. Rak, R. M. Santilli. American Journal of Modern Physics. 6 (4-1), 85 (2017). Crossref
14. R. M. Santilli. International Journal of Applied Physics and Mathematics. 9 (2), 72 (2019). Crossref
15. R. L. Mills. The Grand Unified Theory of Classical Physics. BlackLight Power, Cranbury, New Jersey (2011).
16. R. Mills, Y. Lu, R. Frazer. Chinese Journal of Physics. 56, 1667 (2018). Crossref
17. T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L. G. M. Pettersson, A. Nilsson, S. Shin. Chem. Phys. Lett. 460, 387 (2008). Crossref
18. C. Huang, K. T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T. M. Weiss, Y. Horikawa, M. Leetmaa, M. P. Ljungberg, O. Takahashi, A. Lenz, L. Ojamae, A. P. Lyubartsev, S. Shin, L. G. M. Pettersson, A. Nilsson. PNAS. 106, 15214 (2009). Crossref
19. C. G. Camara, S. D. Hopkins, K. S. Suslick, S. J. Putterman. Phys. Rev. Lett. 98 (6), 064301 (2007). Crossref
20. R. I. Nigmatulin, R. T. Lahey, R. P. Taleyarkhan, C. D. West, R. C. Block. Phys. Usp. 57, 877 (2014). Crossref