Influence of annealing parameters on the mechanical properties of heterogeneous lamella structured 5083 aluminum alloy

X. Fang ORCID logo , G. He, M. Ruiz, C. Zheng, Y. Wang, Z. Li, Y. Zhu show affiliations and emails
Received 28 August 2019; Accepted 13 October 2019;
Citation: X. Fang, G. He, M. Ruiz, C. Zheng, Y. Wang, Z. Li, Y. Zhu. Influence of annealing parameters on the mechanical properties of heterogeneous lamella structured 5083 aluminum alloy. Lett. Mater., 2019, 9(4s) 556-560
BibTex   https://doi.org/10.22226/2410-3535-2019-4-556-560

Abstract

Heterogeneous lamella structured Al-5083 with superior combinations of strength and ductility have been fabricated with different annealing conditions. Hetero-deformation induced (HDI) hardening is an important reason for the excellent combinations of strength and ductility and precipitation hardening is one important component of HDI hardeningIt has long been a research goal to obtain both high strength and ductility in structural materials. As the most important structural materials, metals and alloys are either strong or ductile, but seldom maintain both characteristics at the same time. After decades of attempts, extraordinary high strength has been achieved by involving nano- or ultrafine-grained structure. However, the ductility of these materials is relatively low. In the recent years, heterostructured materials have been demonstrated to possess superior combinations of strength and ductility, which are attributed to the hetero-deformation induced (HDI) strengthening and work hardening. The HDI hardening in previous studies is mainly caused by soft / hard domain boundaries. Here we report a heterogeneous lamella structure (HLS) in 5083 aluminum alloy fabricated by rolling and partial annealing. Superior combinations of strength and ductility have been achieved in the HLS Al-5083 through various annealing times and temperatures in this paper. Based on EBSD and TEM analysis, HDI hardening is an important reason for the excellent combination of strength and ductility. And soft / domain boundary hardening, and precipitation hardening are revealed as two important components of HDI hardening in Al-5083. These findings elucidate the HDI hardening mechanism in Al-5083 alloy, which will help us design the heterostructure of Al-5083 for engineering applications.

References (34)

1. X. Wu, Y. Zhu. Mater. Res. Lett. 5, 527 (2017). Crossref
2. X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu. Proc. Natl. Acad. Sci. 112, 14501 (2015). Crossref
3. C. X. Huang, Y. F. Wang, X. L. Ma, S. Yin, H. W. Höppel, M. Göken, X. L. Wu, H. J. Gao, Y. T. Zhu. Mater. Today. 21 (7), 713 (2018). Crossref
4. Y. Wang, M. Chen, F. Zhou, E. Ma. Nature. 419, 912 (2002). Crossref
5. B. O. Han, E. J. Lavernia, Z. Lee, S. Nutt, D. Witkin. Metall. Mater. Trans. A. 36, 957 (2005). Crossref
6. R. Q. Ye, B. Q. Han, E. J. Lavernia. Metall. Mater. Trans. A. 36, 1833 (2005). Crossref
7. T. H. Fang, W. L. Li, N. R. Tao, K. Lu. Science. 331, 1587 (2011). Crossref
8. H. W. Huang, Z. B. Wang, J. Lu, K. Lu. Acta Mater. 87, 150 (2015). Crossref
9. X. Wu, P. Jiang, L. Chen, F. Yuan, Y. T. Zhu. Proc. Natl. Acad. Sci. 111, 7197 (2014). Crossref
10. Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu. Science. 362, eaau1925 (2018). Crossref
11. J. Li, Y. Cao, B. Gao, Y. Li, Y. Zhu. J. Mater. Sci. 53, 10442 (2018). Crossref
12. Z. Zhang, S. K. Vajpai, D. Orlov, K. Ameyama. Mater. Sci. Eng. A. 598, 106 (2014). Crossref
13. S. K. Vajpai, M. Ota, T. Watanabe, R. Maeda, T. Sekiguchi, T. Kusaka, K. Ameyama. Metall. Mater. Trans. A. 46, 903 (2015). Crossref
14. C. Sawangrat, S. Kato, D. Orlov, K. Ameyama. J. Mater. Sci. 49, 6579 (2014). Crossref
15. K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki. Mater. Sci. Eng. A. 604, 135 (2014). Crossref
16. M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe. Acta Mater. 59, 658 (2011). Crossref
17. Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, C. C. Tasan. Nature. 534, 227 (2016). Crossref
18. X. Ma, C. Huang, J. Moering, M. Ruppert, H. W. Höppel, M. Göken, J. Narayan, Y. Zhu. Acta Mater. 116, 43 (2016). Crossref
19. I. J. Beyerlein, J. R. Mayeur, S. Zheng, N. A. Mara, J. Wang, A. Misra. Proc. Natl. Acad. Sci. 111, 4386 (2014). Crossref
20. T. C. Schulthess, P. E. A. Turchi, A. Gonis, T.-G. Nieh. Acta Mater. 46, 2215 (1998). Crossref
21. Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu. Mater. Sci. Eng. R Rep. 133, 1 (2018). Crossref
22. Y. B. Lee, D. H. Shin, K.-T. Park, W. J. Nam. Scr. Mater. 51, 355 (2004). Crossref
23. V. L. Tellkamp, E. J. Lavernia. Nanostructured Mater. 12, 249 (1999). Crossref
24. K. M. Youssef, R. O. Scattergood, K. L. Murty, C. C. Koch. Scr. Mater. 54, 251 (2006). Crossref
25. Z. Horita, T. Fujinami, M. Nemoto, T. G. Langdon. J. Mater. Process. Technol. 117, 288 (2001). Crossref
26. Q. Xing, X. Huang, N. Hansen. Metall. Mater. Trans. A. 37, 1311 (2006). Crossref
27. K. Neishi, Z. Horita, T. G. Langdon. Mater. Sci. Eng. A. 325, 54 (2002). Crossref
28. H. Miura, T. Sakai, S. Maruoka, J. J. Jonas. Philos. Mag. Lett. 90, 93 (2010). Crossref
29. M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu. Mater. Res. Lett. 4, 145 (2016). Crossref
30. R. Xu, G. Fan, Z. Tan, G. Ji, C. Chen, B. Beausir, D.-B. Xiong, Q. Guo, C. Guo, Z. Li, D. Zhang. Mater. Res. Lett. 6, 113 (2018). Crossref
31. K. Tanaka, T. Mori. Acta Metall. 18, 931 (1970). Crossref
32. D. Hull, D. J. Bacon. Introduction to dislocations, 5th ed. Amsterdam, Elsevier, Butterworth-Heinemann (2011) 272 p. Crossref
33. H. Zhou, C. Huang, X. Sha, L. Xiao, X. Ma, H. W. Höppel, M. Göken, X. Wu, K. Ameyama, X. Han, Y. Zhu. Mater. Res. Lett. 7, 376 (2019). Crossref
34. Y. Nakayama, T. Takaai, D. Jin. Mater. Sci. Forum. 217 - 222, 1269 (1996). Crossref

Funding

1. US Army Research Office - W911 NF-12-1-0009
2. State of North Carolina and the National Science Foundation - ECCS-1542015