Stability and energy characteristics of extended nitrogen nanotubes: density functional theory study

K.S. Grishakov, K.P. Katin ORCID logo , M.A. Gimaldinova ORCID logo , M.M. Maslov show affiliations and emails
Received 08 June 2019; Accepted 18 June 2019;
Citation: K.S. Grishakov, K.P. Katin, M.A. Gimaldinova, M.M. Maslov. Stability and energy characteristics of extended nitrogen nanotubes: density functional theory study. Lett. Mater., 2019, 9(3) 366-369
BibTex   https://doi.org/10.22226/2410-3535-2019-3-366-369

Abstract

We have discovered new stable forms of singe bonded nitrogen structures based on zigzag nanotubes of small diameters. These structures can be used as a basis for new high energy density materials.We apply the density functional theory with B3LYP exchange-correlation energy functional and the basis set 6-31G(d) to investigate structural, energetic, and electronic properties and stability of extended armchair and zigzag nitrogen nanotubes with a length of ≈ 3 nm. The capping effect, as well as the passivation of nanotubes’ ends by hydrogen atoms and hydroxyl groups on their stability, are studied. According to our calculations, pristine nitrogen nanotubes are unstable. Both capping and passivation of the nanotube ends provide thermodynamic stability only for (3, 0) and (4, 0) zigzag nitrogen nanotubes. Moreover, the calculated frequency spectra of considered systems confirm their dynamic stability. We stress the fact that some extended nitrogen nanotubes are found to be stable under ambient conditions, i. e., in the absence of external factors such as pressure, spatial confinement, etc. The calculated HOMO-LUMO gaps for these stable extended systems are of the order of 4 eV, so they can be assigned to the class of insulators. It is shown that nitrogen nanotubes are able to store a large amount of energy and can be used as a basis for new high-energy-density materials. We expect that the all-nitrogen tubes with the longer effective length of similar chiralities are also should be stable.

References (40)

1. P. C. Samartzis, A. M. Wodtke. Int. Rev. in Phys. Chem. 25 (4), 527 (2006). Crossref
2. C. Mailhiot, L. H. Yang, A. K. McMahan. Physical Review B. 46 (22), 14419 (1992). Crossref
3. M. I. Eremets, A. G. Gavriliuk, N. R. Serebryanaya, I. A. Trojan, D. A. Dzivenko, R. Boehler, H. K. Mao, R. J. Hemley. The Journal of Chemical Physics. 121 (22), 11296 (2004). Crossref
4. M. M. G. Alemany, J. L. Martins. Phys. Rev. B. 68, 024110 (2003). Crossref
5. W. D. Mattson, D. Sanchez-Portal, S. Chiesa, R. M. Martin. Phys. Rev. Lett. 93, 125501 (2004). Crossref
6. F. Zahariev, A. Hu, J. Hooper, F. Zhang, T. Woo. Phys. Rev. B. 72, 214108 (2005). Crossref
7. A. R. Oganov, C. W. Glass. J. Chem. Phys. 124, 244704 (2006). Crossref
8. F. Zahariev, J. Hooper, S. Alavi, F. Zhang, T. K. Woo. Phys. Rev. B. 75, 140101 (R) (2007). Crossref
9. J. Kotakoski, K. Albe. Phys. Rev. B. 77, 144109 (2008). Crossref
10. Y. Ma, A. R. Oganov, Z. Li, Y. Xie, J. Kotakoski. Physical Review Letters. 102, 065501 (2009). Crossref
11. J. Sun, M. Martinez-Canales, D. D. Klug, C. J. Pickard, R. J. Needs. Physical Review Letters. 111, 175502 (2013). Crossref
12. A. A. Adeleke, M. J. Greschner, A. Majumdar, B. Wan, H. Liu, Z. Li, H. Gou, Y. Yao. Physical Review B. 96, 224104 (2017). Crossref
13. S. V. Bondarchuk, B. Minaev. Phys. Chem. Chem. Phys. 19, 6698 (2017). Crossref
14. D. Tomasino, M. Kim, J. Smith, C.-S. Yoo. Physical Review Letters. 113, 205502 (2014). Crossref
15. T. M. Klapotke. New Nitrogen-Rich High Explosives. In: High Energy Density Materials. Structure and Bonding. Vol. 125. Berlin, Springer-Verlag GmbH (2007). p. 85 - 121. Crossref
16. F. Cacase, G. Petris, A. Troiani. Science. 295, 480 (2002). Crossref
17. S. Ajith Perera, R. J. Bartlett. Chem. Phys. Lett. 314, 381 (1999). Crossref
18. W. J. Lauderdale, J. F. Stanton, R. J. Bartlett. J. Phys. Chem. 96, 1173 (1992). Crossref
19. A. Vij, J. Pavlovich, W. Wilson, V. Vij, K. Christe. Angew. Chem. Int. Ed. 41, 3051 (2002). <3051::AID-ANIE3051>3.0.CO;2-T. Crossref
20. A. Vij, W. W. Wilson, V. Vij, F. S. Tham, J. A. Sheehy. J. Am. Chem. Soc. 123, 6308 (2001). Crossref
21. K. Christe, W. Wilson, J. Sheehy, J. Boatz. Angew. Chem. Int. Ed. 38, 2004 (1999). <2004::AID-ANIE2004>3.0.CO;2-7. Crossref
22. M. Schmidt, M. Gordon, J. Boatz. Int. J. Quantum Chem. 76, 434 (2000). <434::AID-QUA12>3.0.CO;2-W. Crossref
23. S. Fau, K. J. Wilson, R. J. Bartlett. J. Phys. Chem. A. 106, 4639 (2002). Crossref
24. L. J. Wang, P. G. Mezey, M. Z. Zgierski. Chemical Physics Letters. 391 (4-6), 338 (2004). Crossref
25. C. Chen, S.-F. Shyu. International Journal of Quantum Chemistry. 73 (4), 349 (1999). <349::aid-qua4>3.0.co;2-j. Crossref
26. M. N. Glukhovtsev, H. Jiao, P. von R. Schleyer. Inorganic Chemistry. 35 (24), 7124 (1996). Crossref
27. T.-K. Ha, O. Suleimenov, M. T. Nguyen. Chemical Physics Letters. 315 (5-6), 327 (1999). Crossref
28. D. L. Strout. The Journal of Physical Chemistry A. 108 (13), 2555 (2004). Crossref
29. H. Zhou, N.-B. Wong, G. Zhou, A. Tian. The Journal of Physical Chemistry A. 110 (10), 3845 (2006). Crossref
30. M. R. Manaa. Chemical Physics Letters. 331 (2-4), 262 (2000). Crossref
31. H. Zhou, N.-B. Wong, G. Zhou, A. Tian. The Journal of Physical Chemistry A. 110 (23), 7441 (2006). Crossref
32. H. Zhou, N.-B. Wong, A. Tian. Journal of Molecular Graphics and Modelling. 25 (4), 578 (2006). Crossref
33. L. Y. Bruney, T. M. Bledson, D. L. Strout. Inorganic Chemistry. 42 (24), 8117 (2003). Crossref
34. P. Slepička, T. Hubáček, Z. Kolská, S. Trostová, N. Slepičková Kasálková, L. Bačáková, V. Švorčík. The Properties and Application of Carbon Nanostructures, In: Polymer Science. IntechOpen (2013). Crossref
35. I. S. Ufimtsev, T. J. Martínez. J. Chem. Theory Comput. 5, 2619 (2009). Crossref
36. A. V. Titov, I. S. Ufimtsev, N. Luehr, T. J. Martínez, J. Chem. Theory Comput. 9, 213 (2013). Crossref
37. J. Kästner, J. M. Carr, T. W. Keal, W. Thiel, A. Wander, P. Sherwood. J. Phys. Chem. A. 113, 11856 (2009). Crossref
38. T. P. M. Goumans, C. R. A. Catlow, W. A. Brown, J. Kästner, P. Sherwood. Phys. Chem. Chem. Phys. 11, 5431 (2009). Crossref
39. C. Lee, W. Yang, R. G. Parr. Phys. Rev. B. 37, 785 (1988). Crossref
40. A. D. Becke. J. Chem. Phys. 98, 5648 (1993). Crossref

Funding

1. Russian Foundation for Basic Research - 18-32-20139 mol_a_ved