Synthesis of magnesium-zinc-yttrium master alloy

S.A. Savchenkov, V.Y. Bazhin, V.N. Brichkin, V.G. Povarov ORCID logo , V.L. Ugolkov, D.R. Kasymova show affiliations and emails
Received 19 March 2019; Accepted 16 May 2019;
Citation: S.A. Savchenkov, V.Y. Bazhin, V.N. Brichkin, V.G. Povarov, V.L. Ugolkov, D.R. Kasymova. Synthesis of magnesium-zinc-yttrium master alloy. Lett. Mater., 2019, 9(3) 339-343
BibTex   https://doi.org/10.22226/2410-3535-2019-3-339-343

Abstract

Microstructure of 35Mg-45Zn-20Y master alloy, x1000The research investigates the process of synthesis of magnesium master alloy with zinc and yttrium. Based on the analysis of state diagrams and requirements for fluxes for smelting of magnesium alloys, the composition of the saline mixture was chosen. X-ray phase analysis of the molten salt mixture showed that during the melting process, yttrium fluoride partially interacted with sodium and potassium chlorides, forming complex salts: Na1.5Y2.5F9, NaYF4, Na5Y9F32, and KY7F22, which are the source for yttrium recovery. Differential thermal analysis (DTA) determined the temperature ranges and values of thermal effects of melting and crystallization of a mixture of the KCl-NaCl-CaCl2‑YF3 salt in the recovery of yttrium compounds by a magnesium-zinc alloy. It was determined that interaction within the system begins at a temperature equal to the initial melting point of zinc, and occurs in the range from 415°C to 672°C. As a result of series of experimental meltings, the basic laws of the synthesis of magnesium-zinc-yttrium master alloys from the selected technological salt mixture, as well as the main factors of the metallothermic process, affecting the degree of yttrium reduction were revealed. The metallographic study of the alloys obtained showed that the samples consisted of solid solutions of MgxZny and intermetallic compounds of MgxYyZnz, which were located along the boundaries of dendritic cells. The proposed method of recovery of yttrium fluoride from the chloride melt allows extracting up to 97.2 % of yttrium.

References (26)

1. S. Lyu, G. Li, T. Hu, R. Zheng, W. Xiao, C. Ma. Materials Letters. 217, 79 (2018). Crossref
2. Y. Chen, Y. Wang, J. Gao. J. Alloys and Comp. 740, 727 (2018). Crossref
3. R. Zhang, J. Wang, S. Huang, S. Liu, F. Pan. Journal of Magnesium and Alloys. 5 (3), 355 (2017). Crossref
4. X. Yu, B. Jiang, J. He, B. Liu, Z. Jiang, F. Pan. J. Alloys and Comp. 687, 252 (2016). Crossref
5. K. Liu, J. Zhang, D. Tang, L. L. Rokhlin, F. M. Elkin, J. Meng. Materials Chemistry and Physics. 117 (1), 107 (2009). Crossref
6. K. Liu, L. L. Rokhlin, F. M. Elkin, D. Tang, J. Meng. Materials Science and Engineering. 527 (3), 828 (2010). Crossref
7. K. Liu, J. Zhang, H. Lu, D. Tang, L. L. Rokhlin, F. M. Elkin, J. Meng. Materials & Design. 31 (1), 210 (2010). Crossref
8. Y. Chen, Y. Wang, J. Gao. J. Alloys and Comp. 740, 727 (2018). Crossref
9. S. H. Lu, D. Wu, R. S. Chen, E. Han. Materials Science and Engineering. 735, 173 (2018). Crossref
10. B. Q. Shi, Y. Q. Cheng, X. L. Shang, H. Yan, R. S. Chen, W. Ke. Materials Science and Engineering: A. 743, 558 (2019). Crossref
11. Y. Sun, R. Wang, C. Peng, Y. Feng. Materials Science and Engineering: A. 733, 429 (2018). Crossref
12. L. Liu, F. Pan, X. Chen, Y. Huang, B. Song, H. Yang, N. Hort. Vacuum. 155, 445 (2018). Crossref
13. V. V. Kaminsky, S. A. Petrovich, V. A. Lipin. Journal of Mining Institute. 233, 512 (2018). (in Russian) [В. В. Каминский, С. А. Петрович, В. А. Липин. Записки Горного института. 233, 512 (2018).]. Crossref
14. B. Nagasivamuni, G. Wang, D. H. StJohn, M. S. Dargusch. Journal of Crystal Growth. 512, 20 (2019). Crossref
15. V. Y. Bazhin, E. M. Gutema, S. A. Savchenkov. Metallurgist. 60 (11-12), 1267 (2017). Crossref
16. W. Guobing, P. Xiaodong, L. Junchen, X. Weidong, W. Quny. Rare Metal Materials and Engineering. 42 (10), 2009 (2013). Crossref
17. P. Xiaodong, L. Junchen, X. Sunyun, W. Guobin. Rare Metal Materials and Engineering. 42 (12), 2421 (2013). Crossref
18. C. Wang, M. Sun, F. Zheng, L. Peng, W. Ding. Journal of Magnesium and Alloys. 2, 239 (2014). Crossref
19. M. Sun, X. Hu, L. Peng, P. Fu, W. Ding, Y. Peng. Journal of Materials Processing Technology. 218, 57 (2015). Crossref
20. N. V. Baryshnikov, L. P. Skripaleva, V. D. Savin, G. G. Morozov, A. S. Derevyanko. Trudy Giredmeta. 74, 20 (1974). (in Russian) [Н. В. Барышников, Л. П. Скрипалева, В. Д. Савин, Г. Г. Морозов, А. С. Деревянко. Труды Гиредмета. 74, 20 (1974).].
21. S. A. Savchenkov, V. Yu. Bazhin. TU Bergakademie Freiberg Scientific Reports on Resource Issues. 1. 315 (2016).
22. Y. Li, X. Huang, Q. Fu, G. Liu, H. Li, Y. Liu. Procedia Engineering. 27, 1808 (2012). Crossref
23. E. Mosisa, V. Yu. Bazhin, S. A. Savchenkov. Research Journal of Applied Sciences. 11 (5), 188 (2016). Crossref
24. S. A. Savchenkov, V. Yu. Bazhin, V. N. Brichkin, Ya. I. Kosov, V. L. Ugolkov. Metallurg. 4, 71 (2019). (in Russian) [C. А. Савченков, В. Ю. Бажин, В. Н. Бричкин, Я. И. Косов, В. Л. Уголков. Металлург. 4, 71 (2019).].
25. Z. Z. Arthur, D. Pelton. J. Alloys and Comp. 652, 426 (2015). Crossref
26. S. A. Savchenkov, V. L. Ugolkov. Proceedings of Irkutsk State Technical University. 1 (23), 187 (2019). (in Russian) [C. А. Савченков, В. Л. Уголков. Вестник Иркутского государственного технического университета. 1 (23), 187 (2019).]. Crossref

Funding

1. Ministry of Education and Science of the Russian Federation - project registration number 11.4098.2017 / PM from 01.01.2017