Study of Luders deformation in ultrafine low-carbon steel by the digital image correlation technique

V.A. Khotinov, O.N. Polukhina, D.I. Vichuzhanin ORCID logo , G.V. Schapov, V.M. Farber show affiliations and emails
Received 18 April 2019; Accepted 26 May 2019;
This paper is written in Russian
Citation: V.A. Khotinov, O.N. Polukhina, D.I. Vichuzhanin, G.V. Schapov, V.M. Farber. Study of Luders deformation in ultrafine low-carbon steel by the digital image correlation technique. Lett. Mater., 2019, 9(3) 328-333
BibTex   https://doi.org/10.22226/2410-3535-2019-3-328-333

Abstract

Luders deformation in ultrafine low-carbon microalloyed X80 steel has been studied upon tensile testing by digital image correlation technique. Two mechanisms of Luders deformation are shown to be observed depending on the strain ageing effect.The studied steel was a low-carbon microalloyed steel of type 08G2B, used for pipes with an outer diameter of 1420 mm for natural gas transportation with an operation pressure of 11.8 MPa with the chemical composition characterized by a low-carbon content (0.08 wt.%) with additions of Mn, Cr, Mo, Ni and microalloying elements (∑(Nb, V, Ti) ≈ 0.10 wt.%). Secondary refining and continuous casting followed by thermo-mechanical controlled processing (TMCP) with a strict temperature-reduction route and control of the post-deformation cooling rate are used to produce high-strength welded X80 and higher-grade pipes with an extremely ultrafine heterophase structure (d =1– 3 μm) and high Charpy energy of more than 250 J / cm2 at –40°С. Usually sheet metal is not subjected to heat treatment. However, pipes can be heated by applying an anti-corrosion coating at 200 – 250°C or by welding in a heat affected zone, which initiates the strain aging effect (SAE). The appearance of SAE can also occur upon prolonged exposure of pipes in the area of climatic temperatures, as well as in the course of installation and operation of pipelines, which inevitably leads to a change in the mechanical properties of the metal. Luders deformation in ultrafine low-carbon microalloyed steel X80 has been studied upon tensile testing by the digital image correlation technique. Two mechanisms of Luders deformation are shown to be observed depending on the strain ageing effect. It is determined that the mechanical behavior of the material at the stage of uniform deformation strongly correlates with the type of Luders deformation.

References (20)

1. R. Rana, S. B. Singh. Automotive Steels - Design, Metallurgy, Processing and Applications. Woodhead Publishing (2017) 478 p.
2. T. Waterschoot, A. De, S. Vandeputte, B. De Cooman. Met. Trans. A. 34 (13), 781 (2003). Crossref
3. M. A. Smirnov, I. Yu. Pyshmintsev, O. V. Varnak et al. Steel in Translation. 46 (1), 58 (2016). Crossref
4. T. Liu, H. Hou, X. Zhang et al. Mat. Sci. Eng. A. 726, 160 (2018). Crossref
5. V. I. Danilov, V. V. Gorbatenko, L. B. Zuev, D. V. Orlova, L. V. Danilova. Izvestiya. Ferrous Metallurgy. 60 (10), 831 (2017). (in Russian) [В. И. Данилов, В. В. Горбатенко, Л. Б. Зуев, Д. В. Орлова, Л. В. Данилова. Известия Высших Учебных Заведений. Черная Металлургия. 60 (10), 831 (2017).]. Crossref
6. W. G. Zhao, M. Chen, S. H. Chen, J. B. Qu. Mater. Sci. Eng. A. 550, 418 (2012). Crossref
7. V. N. Chuvildeev. Vliyaniye stareniya na ekspluatatsionnyye svoystva staley magistral'nykh gazoprovodov. In: Problems of aging of steels for gas pipelines. Nizhny Novgorod, University book (2006) p. 18-67. (in Russian) [В. Н. Чувильдеев. Влияние старения на эксплуатационные свойства сталей магистральных газопроводов. В кн.: Problemy stareniya staley magistral'nykh truboprovodov. Н. Новгород, Университетская книга (2006) с. 18-67.].
8. S. Hosseini, A. Heidapour, F. Collins, C. R. Hutchinson. Constr. and Build. Mat. 77, 83 (2015). Crossref
9. A. B. Arabey, V. M. Farber, I. Yu. Pyshmintsev et al. Izvestiya. Ferrous Metallurgy. 55 (1), 30 (2012). (in Russian) [А. Б. Арабей, В. М. Фарбер, И. Ю. Пышминцев и др. Изв. Вузов. Черная металлургия. 1, 30 (2012).]. Crossref
10. S.-Y. Shin. Met. Trans. A. 44 (6), 2613 (2013). Crossref
11. B. Tanguy, T. T. Luu, G. Perrin et al. Int. J. Pressure Vessels and Piping. 85, 322 (2008). Crossref
12. J. Pelleg. Mechanical properties of materials. Dordrecht, Springer (2013) 634 p. Crossref
13. M. A. Shtremel. Strength of alloys: Vol. 2: Deformation. Moscow, MISIS (1997) 527 p. (in Russian) [М. А. Штремель. Прочность сплавов. Ч. 2: Деформация. Москва, МИСИС (1997) 527 с.].
14. V. M. Farber, O. V. Selivanova, V. A. Khotinov, et al. Deformatsionnoye stareniye v stalyakh. Yekaterinburg, URFU (2018) 72 p. (in Russian) [В. М. Фарбер, О. В. Селиванова, В. А. Хотинов и др. Деформационное старение в сталях. Екатеринбург, УрФУ (2018) 72 с.].
15. N. Ormsuptave, V. Ulthaisangsuk. Mat. Design. 118, 314 (2017). Crossref
16. V. E. Vildeman, M. P. Tretyakov, R. V. Bulbovich et al. Experimental studies of the properties of materials under complex thermomechanical processing. Moscow, Fizmatlit (2012) 204 p. (in Russian) [В. Э. Вильдеман, М. П. Третьяков, Р. В. Бульбович и др. Экспериментальные исследования свойств материалов при сложных термомеханических воздействиях. Москва, Физматлит (2012) 204 с.].
17. M. A. Sutton, J.-J. Orteu, H. W. Schreier. Image correlation for shape, motion and deformation measurements. University of South Carolina (2009) 364 p.
18. S. Avril, F. Pierron, M. A. Sutton. Mech. Mater. 40 (9), 729 (2008). Crossref
19. V. A. Khotinov, O. N. Polukhina, O. V. Selivanova, V. M. Farber. Materialovedenie. 5, 8 (2018). (in Russian) [В. А. Хотинов, О. Н. Полухина, О. В. Селиванова, В. М. Фарбер. Материаловедение. 5, 8 (2018).].
20. V. A. Khotinov, O. V. Selivanova, V. M. Farber. Deformatsiya i Razrushenie materialov. 1, 37 (2019). (in Russian) [В. А. Хотинов, О. В. Селиванова, В. М. Фарбер. Деформацияи разрушение материалов. 1, 37 (2019).]. Crossref

Funding

1. Government of the Russian Federation, resolution no. 211 - contract no. 02. А03.21.0006
2. Institute of Engineering Science (Ural Branch of RAS) - no. 0391‑2016‑0004