Short-term high-temperature creep of Grade 5 titanium alloy heated in air and argon

Received 29 March 2019; Accepted 07 May 2019;
This paper is written in Russian
Citation: L.M. Zamaraev. Short-term high-temperature creep of Grade 5 titanium alloy heated in air and argon. Lett. Mater., 2019, 9(3) 294-298
BibTex   https://doi.org/10.22226/2410-3535-2019-3-294-298

Abstract

The paper presents results of studying the deformation of Grade 5 alloy samples while they are heated to temperatures ranging between 900 and 1350 K at constant tensile stresses of 4.45; 6.91 and 9.36 MPa in air and argon environments.The processing of the results has allowed us to evaluate the empirical coefficients for the Grade 5 alloy in two dependences obtained earlier for the Ti-5Al and Grade 2 alloys. One dependence relates creep rate to heating temperature, tensile stress, and creep activation energy; the other one relates creep deformation onset temperature (residual creep deformation within 1 hour of holding is 0.2%) to the conventional short-term creep limit.The paper presents the results of studying the deformation of samples of the alloy Grade 5 while they are heated to temperatures ranging between 900 and 1350 K with constant tensile stresses of 4.45, 6.91 and 9.36 MPa, which is significantly below the yield stress of the alloy at the test temperatures (σT ≥ 34 MPa). Under these conditions, the deformation occurs due to the mechanism of short-term creep. During testing, the samples are heated in air and argon environments. The results are compared with the results obtained earlier in similar studies for Grade 2 commercially pure titanium and Ti-5AL. The investigation has revealed a qualitative similarity of the effect of environment on the processes of creep deformation in Grade 2 commercially pure titanium, Ti-5AL alloy, and Grade 5 alloy. Herewith, all the alloys under study have close values of activation energy (from 250 to 320 kJ/mol). The experiments have shown that, as compared to previously studied alloys, Grade 5 alloy has higher temperatures of the onset of creep deformation and lower creep rates. Processing of the results has allowed us to evaluate the empirical coefficients for Grade 5 alloy in two dependences obtained earlier for the Ti-5AL and Grade 2 alloys. One dependence relates the creep rate to the heating temperature, tensile stress, and creep activation energy; the other one relates the creep deformation onset temperature (residual creep deformation within 1 hour of holding is 0.2%) to the conventional short-term creep limit.

References (24)

1. J. J. Xiao, D. S. Li, X. Q. Li, P. Ding, K. Zhao, X. Z. Huang, M. J. Xu. Transactions of Nonferrous Metals Society of China. 25 (2), 420 (2015). Crossref
2. D. L. Xiao, D. S. Li, C. Jin, T. Deng. Rare Metal Materials and Engineering. 42 (12), 2629 (2013).
3. J. Kumar, S. G. S. Raman, V. Kumar. Transactions of the Indian Institute of Metals. 69 (2), 349 (2016). Crossref
4. H. Yu, C. Dong, Z. Jiao, F. Kong, Y. Chen, Y. Su. Acta Metallurgica Sinica. 49 (11), 1311 (2013). Crossref
5. D. McLean. Mechanical Properties of Metal. New York, London, John Wiley & Sons (1962) 184 p.
6. F. Garofalo. Trans. AIME. 227, 351 (1963).
7. B. A. Kolachev. Met. Sci. Heat Treat. 4 (3-4), 93 (1999). Crossref
8. D. A. P. Reis, C. R. M. Silva, M. C. A. Nono, M. J. R. Barboza. Mater. Sci. Eng. A. 399 (1-2), 276 (2005). Crossref
9. A. M. Lokoshchenko, A. A. Il’In, A. M. Mamonov, V. V. Nazarov. Materials Science. 44 (5), 700 (2008). Crossref
10. G. P. Grabovetskaya, O. V. Zabudchenko, E. N. Stepanova. Russian Metallurgy (Metally). 3, 229 (2010). Crossref
11. M. C. Brandes, M. Baughman, M. J. Mills, J. C. Williams. Mater. Sci. Eng. A. 551, 13 (2012). Crossref
12. M. L. Wasz, F. R. Brotzen, R. B. McLellan, A. J. Griffin. Int. Mater. Rev. 41 (1), 1 (1996). Crossref
13. C. J. Beevers, M. R. Warren, D. V. Edmonds. Journal of the Less-Common Metals. 14 (4), 387 (1968). Crossref
14. A. V. Makarov, E. S. Gorkunov, L. Kh. Kogan. Russian Journal of Nondestructive Testing, 43 (1), 21 (2007). Crossref
15. S. V. Smirnov, L. M. Zamaraev, P. P. Matafonov. Russian Metallurgy (Metally). 1, 67 (2010). Crossref
16. D. A. P. Reis, C. M. Neto, F. P. Neto, M. J. R. Barboza. SAE Technical Papers. 2007-01-2814 (2007). Crossref
17. D. A. P. Reis, C. M. Neto, M. D. C. A. Nono, M. J. R. Barboza, C. R. M. Da Silva, F. P. Neto. Proceedings of the 65th ABM International Congress, 18th IFHTSE Congress and 1st TMS / ABM International Materials Congress. 5, 4229 (2010).
18. S. V. Smirnov, L. M. Zamaraev, A. N. Zamyatin, P. P. Matafonov. Russian Metallurgy (Metally). 3, 255 (2012). Crossref
19. W. J. Evans, J. P. Jones, S. Williams. International Journal of Fatigue. 27, 1473 (2005). Crossref
20. S. V. Smirnov, L. M. Zamaraev. AIP Conf. Proc. 1915, 040069 (2017). Crossref
21. O. D. Sherby, J. L. Lytton, J. E. Dorn. Acta Metall. 5 (4), 219 (1957). Crossref
22. M. Doner, H. Conrad. Metall. Mater. Trans. A. 4 (12), 2809 (1973).
23. H. J. Frost, M. F. Ashby. Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Oxford, New York, Sydney, Pergamon Press (1982) 166 p.
24. S. V. Smirnov, L. M. Zamaraev, P. P. Matafonov. International journal of applied and fundamental research. 11, 555 (2014). (in Russian) [С. В. Смирнов, Л. М. Замараев, П. П. Матафонов. Международный журнал прикладных и фундаментальных исследований. 11, 555 (2014).].