The effect of ultrasonic impact-frictional treatment on the surface roughness and hardening of 09Mn2Si constructional steel

N.V. Lezhnin, A.V. Makarov, S.N. Luchko show affiliations and emails
Received 25 March 2019; Accepted 13 May 2019;
This paper is written in Russian
Citation: N.V. Lezhnin, A.V. Makarov, S.N. Luchko. The effect of ultrasonic impact-frictional treatment on the surface roughness and hardening of 09Mn2Si constructional steel. Lett. Mater., 2019, 9(3) 310-315
BibTex   https://doi.org/10.22226/2410-3535-2019-3-310-315

Abstract

The new method of ultrasonic impact-frictional treatment for surface hardening of structural steel.The paper compares the strengthening of constructional steel 09Mn2Si achieved by traditional ultrasonic impact treatment (UIT), and, the new method of ultrasonic impact-frictional treatment (UIFT), proposed by the authors. UIT is usually performed normally on the surface of the part with lubrication in the contact zone. The idea of UIFT is based on plastic shear deformation, activated by the friction effect of impulse impacts at a certain angle to the surface to be processed. In order to raise the friction coefficient, UIFT is performed without lubrication. It is shown that a decrease in the load application angle to the sample surface (α) increases the depth and hardness of the deformed surface layer of 09G2S structural steel. At the same time, the strengthening effect of treatment in the range of angles of 90 – 70° mainly manifests itself in a thin (a few microns) near-surface layer, and the surface roughness remains almost unchanged. A further decrease in the angle increases the contribution of the friction component. Thus, UIFT at α = 50° gives the depth of the deformed layer 1.5 times, and the surface hardness is 2.5 times higher than after the traditional UIT. It was found that the profile of the pile-ups behind a moving instrument changed from symmetrical after UIT to shifted in the impact direction after UIFT, which led to a twofold increase in surface roughness for α = 50°. It was established that reduction of the UIFT scanning step from 0.2 mm to 0.1 mm (load of 149 N and processing speed of 600 mm/min), improved the surface roughness Ra by a factor of 5 from 3.9 μm to 0.7 μm. A further decrease in the scanning step resulted in a surface coarsening due to fatigue degradation.

References (20)

1. A. V. Makarov, L. G. Korshunov. The Physics of Metals and Metallography. 120 (3), Inprint (2019). Crossref
2. R. A. Savrai, A. V. Makarov, I. Yu. Malygina, E. G. Volkova. Materials Science and Engineering: A. 734, 506 (2018). Crossref
3. H. Kovacı, Y. B. Bozkurt, A. F. Yetim, M. Aslan, A. Çelik. Surface and Coatings Technology. 360, 78 (2019). Crossref
4. B. Arifvianto, Suyitno, M. Mahardika. Applied Surface Science. 258 (10), 4538 (2012). Crossref
5. V. P. Alekhin, O. V. Alekhin. Mashinostroenie i inzhenernoe obrazovanie. 4 (13), 2 (2007). (in Russian) [В. П. Алехин, О. В. Алехин. Машиностроение и инженерное образование. 4 (13), 2 (2007).].
6. X. Yang, X. Wang, X. Ling, D. Wang. Results in Physics. 7, 1412 (2017). Crossref
7. T. R. McNelley. Letters on materials. 5 (3), 246 (2015). Crossref
8. G. Q. Wang, M. K. Lei, D. M. Guo. Procedia CIRP. 45, 323 (2016). Crossref
9. A. V. Panin. Ul'trazvukovaya obrabotka konstruktsionnykh materialov. Tomsk, Publishing House of Tomsk State University (2016) 172 p. (in Russian) [А. В. Панин. Ультразвуковая обработка конструкционных материалов. Томск, Издательский Дом Томского государственного университета (2016) 172 с.].
10. H. Zhang, R. Chiang, H. Qin, Zh. Ren, X. Hou, D. Lin, G. L. Doll, V. K. Vasudevan, Y. Dong, C. Ye. International Journal of Fatigue. 103, 136 (2017). Crossref
11. S. P. Chenakin, V. S. Filatova, I. N. Makeeva, M. A. Vasylyev. Applied Surface Science. 408, 11 (2017). Crossref
12. Z. G. Kovalevskaya, P. V. Uvarkin, A. I. Tolmachev. Russ J Nondestruct Test. 48 (3), 10 (2012). Crossref
13. A. V. Panin, M. S. Kazachenok, A. I. Kozelskaya, R. R. Hairullin, E. A. Sinyakova. Materials Science and Engineering: A. 647, 43 (2015). Crossref
14. Patent RF № 2643289, 2018. (in Russian) [Патент РФ № 2643289, 2018.].
15. A. V. Makarov, R. A. Savrai, I. Yu. Malygina, E. G. Volkova, S. V. Burov. AIP Conference Proceedings. 2053, 020006 (2018). Crossref
16. B. N. Mordyuk, G. I. Prokopenko. Journal of Sound and Vibrations. 308 (3-5), 855 (2007). Crossref
17. J. O. Peters, B. L. Boyce, X. Chen, J. M. McNaney, J. W. Hutchinson, R. O. Ritchie. Engineering Fracture Mechanics. 69, 1425 (2002). Crossref
18. Z. G. Kovalevskaya, Y. F. Ivanov, O. B. Perevalova, V. A. Klimenov, P. V. Uvarkin. The Physics of Metals and Metallography. 114 (1), 41 (2013). Crossref
19. A. V. Makarov, R. A. Savrai, V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, L. Yu. Egorova. Physics of Metals and Metallography. 111 (1), 95 (2011). Crossref
20. A. V. Makarov, R. A. Savrai, N. A. Pozdejeva, S. V. Smirnov, D. I. Vichuzhanin, L. G. Korshunov, I. Yu. Malygina. Surface and Coatings Technology. 205 (3), 841 (2010). Crossref

Similar papers

Funding

1. Ministry of Education and Science of the Russian Federation - The research was carried out within the state assignment of Minobrnauki of Russia on themes No. АААА-А18‑118020190116‑6 (project No. 18‑10‑2‑39) and № АААА-А18‑118020790148‑1, supported by RFBR (project No. 18‑38‑00868).
2. Russian Foundation for Basic Research - The research was carried out within the state assignment of Minobrnauki of Russia on themes No. АААА-А18‑118020190116‑6 (project No. 18‑10‑2‑39) and № АААА-А18‑118020790148‑1, supported by RFBR (project No. 18‑38‑00868).