Structure degradation of the plasma spray thermal barrier coating on the blade during operation

J. Zavaleta Tisnado, O.S. Bondareva, V.Y. Hristosova show affiliations and emails
Accepted  16 April 2019
Citation: J. Zavaleta Tisnado, O.S. Bondareva, V.Y. Hristosova. Structure degradation of the plasma spray thermal barrier coating on the blade during operation. Lett. Mater., 2019, 9(2) 228-233
BibTex   https://doi.org/10.22226/2410-3535-2019-2-228-233

Abstract

The closed topologically packaged phases, which appear after the long-term operation.Thermal barrier coatings are widely used to protect blades of gas turbine engines from exposure to high-temperature flow. In this work, we considered coatings applied by the plasma spray method and consisting of the NiCoCrAlY heat-resistant sublayer and the ZrO2 + 8 %Y2O3 upper ceramic layer. The aim of the work was to study the thermal barrier coating microstructure in the initial state and after long-term operation for 8000 hours to predict the possibility of further exploitation. It is shown that the coating is not destroyed, there are no chipping and peeling. However, the upper ceramic layer is sintered under the influence of high-temperature gas flow, its porosity decreases, and therefore the heat-shielding properties are reduced. At the boundary of the heat-resistant layer and the nickel base, a diffusion zone is formed. It is characterized by significant chemical heterogeneity and release of topologically closed packed phases (TCP-phases). These phases are lamellar carbides of tungsten and chromium. They can be stress concentrators and reduce fatigue resistance. In addition, the γ-solid solution is depleted of refractory alloying elements, which leads to a softening of the alloy. The obtained data show significant structural degradation of the thermal barrier coating and the subsurface area of the blade. Thus, the blade with a resource operation is only recommended in surface facilities.

References (25)

1. F. I. Demin, N. D. Pronichev, I. L. Shitarev. Tekhnologiya izgotovleniya osnovnykh detaley gazoturbinnykh dvigateley. Samara, SSAU Publishers (2010) 328 p. (in Russian). [Ф. И. Демин, Н. Д. Проничев, И. Л. Шитарев. Технология изготовления основных деталей газотурбинных двигателей. Самара, Изд-во СГАУ (2010) 328 c.].
2. A. P. Surzhikov, T. S. Frangulyan, S. A. Gungasov, I. P. Vasiliev. Glass and ceramics. 71 (9-10), 373 (2015). Crossref
3. S. V. Konovalov, V. E. Kormyshev, V. E. Gromov, Y. F. Ivanov, E. V. Kapralov, A. P. Semin. Journal of Surface Investigation. 10 (5), 1119 (2016). Crossref
4. I. V. Stepanova, S. V. Panin, V. G. Durakov, M. A. Korchagin. Russian journal of non-ferrous metals. 54 (1), 112 (2013). Crossref
5. Yu. S. Eliseev, V. V. Krymov, S. A. Kolesnikov, Yu. N. Vasilyev. Nemetalicheskiye kompozitsionnyye materialy v elementakh konstruktsiy i proizvodstve aviatsionnykh gazoturbinnykh dvigateley. Moscow, MGTU-Salyut (2007) 365 p. (in Russian). [Ю. С. Елисеев, В. В. Крымов, С. А. Колесников, Ю. Н. Васильев. Неметалические композиционные материалы в элементах конструкций и производстве авиационных газотурбинных двигателей. Москва, МГТУ-Салют (2007) 365 с.].
6. X. Huibin, G. Hongbo. Thermal Barrier Coatings. Cambridge, Woodhead Publishing Limited (2011) 360p.
7. S. Bose. High Temperature Coatings. Elsevier Inc (2007) 312 p. Crossref
8. V. I. Bogdanovich, S. B. Maryin, I. A. Dokukina, M. G. Giorbelidze. Tsvetnye Metally. 5, 56 (2016). (in Russian) [В. И. Богданович, С. Б. Марьин, И. А. Докукина, М. Г. Гиорбелидзе. Цветные металлы. 5, 56 (2016).]. Crossref
9. V. I. Bogdanovich, M. G. Giorbelidze. IOP Conference Series: Materials Science and Engineering. 177, 1 (2017). Crossref
10. V. I. Bogdanovich, M. G. Giorbelidze. IOP Conference Series: Materials Science and Engineering. 327, 1 (2018). Crossref
11. V. I. Bogdanovich, M. G. Giorbelidze. Key Engineering Materials. 685, 685 (2016). Crossref
12. V. I. Bogdanovich, M. G. Giorbelidze. IOP Conference Series: Materials Science and Engineering, 156, 1 (2016). Crossref
13. V. I. Bogdanovich, M. G. Giorbelidze. IOP Conference Series: Materials Science and Engineering. 286, 1 (2018). Crossref
14. G.-H. Meng, B.-Y. Zhang, H. Liu, G.-J. Yang, T. Xu, C.-X. Li, C.-J. Li. Surface and Coatings Technology. 347, 54 (2018). Crossref
15. D. B. Zaytsev, I. A. Treninkov, А. А. Alexeyev. Aviation materials and technologies. 1 (34), 49 (2015). (in Russian) [Д. В. Зайцев, И. А. Тренинков, А. А. Алексеев. Авиационные материалы и технологии. 1 (34), 49 (2015).]. Crossref
16. G. V. Bobrov, A. A. Ilin, V. S. Spektor. Theory and technology of inorganic coatings formation. Мoscow, Alfa-М (2014) 925 p. (in Russian). [Г. В. Бобров, А. А. Ильин, В. С. Спектор. Теория и технология формирования неорганических покрытий. Москва, Альфа-М (2014) 925 с.].
17. J. J. Skrzypek, A. W. Ganczarski, F. Rustichelli, H. Egner. Advanced Materials and Structures for Extreme Operating Conditions. Berlin, Springer (2008) 258 p.
18. C. Guo, W. Wang, Y. Cheng, S. Zhu and F. Wang. Corrosion Science. 94, 122 (2015). Crossref
19. X. S. M. Jiang, Z. B. Peng, S. C. Bao, Q. M. Liu, J. Wang, C. S. Gong. Corrosion Science. 50, 3213 (2008). Crossref
20. F. Forghan, O. Askari, U. Narusawa, H. Metghalchi. Journal of energy resources technology. 139 (4), 042004 (2007). Crossref
21. B. P. Kuznetsov, V. P. Lesnikov, I. P. Konakova, N. A. Popov. Metallovedeniye i termicheskaya obrabotka metallov. 9 (711), 40 (2014). (in Russian) [В. П. Кузнецов, В. П. Лесников, И. П. Конакова, Н. А. Попов. Металловедение и термическая обработка металлов. 9 (711), 40 (2014).].
22. F. D. Kiselev. Zavodskaya laboratoriya, Diagnostika materialov. 84 (3), 36 (2018). (in Russian) [Ф. Д Киселев, Заводская лаборатория, Диагностика материалов. 84, (3), 36 (2018).]. Crossref
23. L. Yang, M. Chen, J. Wang, S. Zhu, F. Wang. Corrosion Science. 102, 72 (2016). Crossref
24. C. Roger. The superalloy fundamentals and applications. New York, Cambridge University Press (2006) 372p.
25. E. N. Kablov, S. A. Muvoyadzhyan. Metally. 1, 5 (2012). (in Russian) [Е. Н. Каблов, С. А. Мубояджян. Металлы. 1, 5 (2012).].