Effect of deformation nanostructuring of nickel and copper on ion sputtering with a focused gallium ion beam with an energy of 30 keV

R.K. Khisamov, K.S. Nazarov, A.V. Irzhak, R.U. Shayakhmetov, I.I. Musabirov, R.R. Timirayev, Y.M. Yumaguzin, R.R. Mulyukov show affiliations and emails
Received 25 February 2019; Accepted 12 April 2019;
Citation: R.K. Khisamov, K.S. Nazarov, A.V. Irzhak, R.U. Shayakhmetov, I.I. Musabirov, R.R. Timirayev, Y.M. Yumaguzin, R.R. Mulyukov. Effect of deformation nanostructuring of nickel and copper on ion sputtering with a focused gallium ion beam with an energy of 30 keV. Lett. Mater., 2019, 9(2) 212-217
BibTex   https://doi.org/10.22226/2410-3535-2019-2-212-217

Abstract

The figure shows the scheme of investigationsIon sputtering of nanostructured, with an average grain size of about 200 nm, fine-grained, with an average grain size of 5 μm, and coarse-grained nickel and copper samples with a focused gallium ion beam with an energy of 30 keV has been investigated. As a result of ion sputtering with a focused ion beam, sputtered (etched) areas with different reliefs have been formed on the surface of the samples. It is shown that the relief formed on the surface of the sputtered area in the process of ion sputtering depends on the grain size of the sample. With a grain size corresponding to the fine-grained or coarse-grained states, sputtering occurs unevenly. With a grain size corresponding to the nanostructured state, sputtering occurs relatively evenly. For the energy of gallium ions 30 keV, the dependence of the maximum relief height Rmax of the sputtered surface on the grain size d of the metal in the range from nanostructured to fine-grained states is established: Rmax ≈ 0.1d. The sputtering yields of nickel and copper samples with different grain sizes are determined. The value of the sputtering yields has been estimated from the measurements of profilograms of the sputtered areas using scanning probe microscopy. It has been established that the deformation nanostructuring of a metal leads to a decrease in the emission of atoms from its surface when bombarded with gallium ions with an energy of 30 keV. Thus, the sputtering yield of coarse-grained nickel and copper is 4.8 ±1.5 and 4.9 ±1.3 atom / ion, respectively, of fine-grained nickel — 4.1±1.6 atom / ion, nanostructured nickel and copper — 2.0 ± 0.5 and 2.1± 0.2 atom / ion, respectively. On the basis of the sputtering mechanism in the linear cascade regime, an analysis of the reasons for the decrease in the sputtering yield of the metal as a result of its deformation nanostructuring is made.

References (31)

1. G. V. Gordeeva, M. I. Guseva, E. S. Ionova, M. E. Evemenenko. Soviet Atomic Energy. 68, 275 (1990). Crossref
2. C. A. Michaluk. Journal of Electronic Materials. 31, 2 (2002). Crossref
3. H. Hosokawa, K. Shimojima, H. Iwasaki, M. Mabuchi. Philosophical Magazine Letters. 84, 713 (2004). Crossref
4. I. Baranov, A. Brunelle, S. Della-Negra. Nuclear Instruments and Methods in Physics Research B. 193, 809 (2002). Crossref
5. V. Amirkhanov, Yu. N. Cheblukov, A. Yu. Didyk, A. Hofman et al. Physics of Particles and Nuclei. 37, 837 (2006). Crossref
6. H. S. Huang, C. H. Chiu, I. T. Hong, H. C. Tung, F. S.-S. Chien. Materials Characterization. 83, 68 (2013). Crossref
7. S. Flege, R. Hatada, T. Kaiser et al. Materials letters. 164, 532 (2016). Crossref
8. K. A. Tolpin, K. F. Minnebaev, V. E. Yurasova. Vacuum. 138, 139 (2017). Crossref
9. T. Nagasaki, H. Hirai, M. Yoshino, T. Yamada. Nuclear Instruments and Methods in Physics Research B. 418, 34 (2018). Crossref
10. A. A. Nazarov, R. R. Mulyukov. Nanostructured Materials. In: Handbook of NanoScience, Engineering and Technology. Ed. by W. A. Goddard III, D. Brenner, S. E. Lyshevski, G. J. Iafrate. CRC Press, Boca Raton (2002) P. 22-1-22-41. Crossref
11. R. Kh. Khisamov, I. M. Safarov, R. R. Mulyukov et al. Technical Physics. 56, 1661 (2011). Crossref
12. R. Kh. Khisamov, I. M. Safarov, R. R. Mulyukov, Yu. M. Yumaguzin. Physics of the Solid State. 55, 1 (2013). Crossref
13. K. S. Nazarov, R. Kh. Khisamov, Yu. M. Yumaguzin, R. R. Mulyukov. Technical Physics Letters. 41, 16 (2015). Crossref
14. R. Kh. Khisamov, K. S. Nazarov, I. M. Safarov, I. I. Musabirov, Yu. M. Yumaguzin, R. R. Mulyukov. Materials Physics and Mechanics. 33, 161 (2017). Crossref
15. R. K. Khisamov, K. S. Nazarov, L. R. Zubairov et al. Physics of the Solid State. 57, 1206 (2015). Crossref
16. R. K. Khisamov, K. S. Nazarov, S. N. Sergeev, R. R. Kabirov, R. R. Mulyukov, A. A. Nazarov. Letters on Materials. 5, 119 (2015). Crossref
17. I. Sh. Valeev, A. Kh. Valeeva, R. R. Mulyukov, R. Kh. Khisamov. Letters on Materials. 6, 347 (2016). Crossref
18. R. Kh. Khisamov, K. S. Nazarov, S. N. Sergeev, R. U. Shayakhmetov, J. A. Baimova, Y. M. Yumaguzin, R. R. Mulyukov. IOP Conference Series: Materials Science and Engineering. 447, 012001 (2018). Crossref
19. V. N. Danilenko, S. N. Sergeev, J. A. Baimova, G. F. Korznikova, K. S. Nazarov, R. K. Khisamov, A. M. Glezer, R. R. Mulyukov. Materials Letters. 236, 51 (2019). Crossref
20. K. Ohya, T. Ishitani. Surface and Coatings Technology. 158 - 159, 8 (2002). Crossref
21. E. Horvath, A. Nemeth, A. A. Koos, M. C. Bein, A. L. Toth, Z. E. Horv, L. P. Bir, J. Gyulai. Superlattices and Microstructures. 42, 392 (2007). Crossref
22. H. Ostadi, K. Jiang, P. D. Prewett. Microelectronic Engineering. 86, 1021 (2009). Crossref
23. N. I. Borgardt, R. L. Volkov, A. V. Rumyantsev, Yu. A. Chaplygin. Technical Physics Letters. 41, 610 (2015). Crossref
24. O. P. Landeros, N. Nedev, M. C. Alvarez et al. Vacuum. 157, 166 (2018). Crossref
25. F. Archie, M. Z. Mughal, M. Sebastiani, E. Bemporad, S. Zaefferer. Acta Materialia. 150, 327 (2018). Crossref
26. F. Baxter, A. Garner, M. Topping, H. Hulme, M. Preuss, P. Frankel. Journal of Nuclear Materials. 504, 176 (2018). Crossref
27. J. A. Taillon, C. Pellegrinelli, Y.-L. Huang, E. D. Wachsman, L. G. Salamanca-Riba. Ultramicroscopy. 184, 24 (2018). Crossref
28. M. Pea, G. Barucca, A. Notargiacomo, L. Di Gaspare, V. Mussi. Applied Surface Science. 433, 899 (2018). Crossref
29. Ed. by R. Behrisch, W. Eckstein. Sputtering by Particle Bombardment. Springer-Verlag, Berlin, Heidelberg. (2007) 509 p. Crossref
30. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, A. A. Shemukhin, V. I. Shulga, Yu. S. Virgiliev. Nuclear Instruments and Methods in Physics Research. B. 354, 146 (2015). Crossref
31. C. Volkert, A. Minor. MRS Bulletin. 32, 389 (2007). Crossref

Funding

1. the Presidium of the Russian Academy of Sciences “Development of physical and chemical mechanics of surface phenomena as the fundamental basis for the development of modern structures and technologies.” - Program #16
2. a grant from the Republic of Bashkortostan to young scientists and young research teams - a grant
3. the state assignment of the IMSP RAS - No.AAAA-A17‑117041310213‑0