Static structures of strained carbon chains: DFT-modeling vs classical modeling of the chain with Lennard-Jones potential

G.M. Chechin, V.S. Lapina show affiliations and emails
Received 18 February 2019; Accepted 12 March 2019;
Citation: G.M. Chechin, V.S. Lapina. Static structures of strained carbon chains: DFT-modeling vs classical modeling of the chain with Lennard-Jones potential. Lett. Mater., 2019, 9(2) 151-156
BibTex   https://doi.org/10.22226/2410-3535-2019-2-151-156

Abstract

Bi-structure appearance in strained carbon chains as a result of a hard type bifurcationWe proved earlier that in the strained monoatomic chains with Lennard-Jones potential there can exist an equilibrium static bi-structure, which corresponds to N −1 equal short interatomic bonds and one long bond with inversion in its center (N is the number of atoms of the chain). In the present work, we investigate with the aid of the density functional theory (DFT modeling) similar structures that can exist in the strained carbon chains. In contrast to the Lennard-Jones model, the bi-structures in this case are inhomogeneous (they have short bonds of different lengths) and appear abruptly when the strain exceeds a certain critical value ηc as a result of a hard bifurcation of the equilibrium state (an analogue of the first-order phase transition). Such a bifurcation is associated with two different parts of potential, in which the Lennard-Jones forces can be quite small (this is the vicinity of the potential minimum and the potential tail) and, therefore, the forces acting on the particle between the long and short bonds can be equal. Since practically all interatomic potentials possess such features, the above bifurcation is universal, i. e. it must occur for any monoatomic chain. We have studied in detail the properties of the above structures, in particular, the behavior of their parameters with increasing N. With the help of DFT-modeling, the electron density of the above structures near the bifurcation point is investigated.

References (19)

1. P. Hohenberg, W. Kohn. Phys. Rev. B. 136 (3B), B864 (1964). Crossref
2. W. Kohn, L. J. Sham. Phys. Rev. 140 (4A), A1133 (1965). Crossref
3. W. Kohn. Rev. Mod. Phys. 71 (5), 1253 (1999). Crossref
4. S. Cahangirov, M. Topsakal, S. Ciraci. Phys. Rev. B. 82 (19), 195444 - 5 (2010). Crossref
5. A. Timoshevskii, S. Kotrechko, Y. Matviychuk. Phys. Rev. B. 91 (24), 245434 (2015). Crossref
6. V. Artyukhov, M. Liu, B. Yakobson. Nano Lett. 14 (8), 4224 (2014). Crossref
7. G. Casillas, A. Mayoral, M. Liu, V. Artyukhov, A. Poncea, B. Yakobson, et al. Carbon. 66, 436 (2014). Crossref
8. M. Liu, V. Artyukhov, H. Lee, F. Xu, B. Yakobson. ACS Nano. 7, 10075 (2013). Crossref
9. C. Motta et al. arXiv: 0904.2905 [phys.comp-ph].
10. C. Motta, M. Giantomassi, M. Cazzaniga, K. Gaál-Nagy, X. Gonze. Comput. Mater. Sci. 50 (2), 698 (2010). Crossref
11. G. M. Chechin, D. A. Sizintsev, O. A. Usoltsev. Comput. Mater. Sci. 138, 353 (2017). Crossref
12. X. Gu, R. Kaiser, A. Mebel. Chem. Phys. Chem. 9, 350 (2008). Crossref
13. Y. Prazdnikov. J. Mod. Phys. 2 (8), 845 (2011). Crossref
14. Y. Prazdnikov. J. Mod. Phys. 4 (7), 994 (2013). Crossref
15. Y. Prazdnikov. J. Mod. Phys. 6 (4), 396 (2015). Crossref
16. G. M. Chechin, V. S. Lapina. Lett. on Mater. 8 (4), 458 (2018). Crossref
17. X. Gonze, B. Amadon, P. Anglade, J. Beuken, F. Bottin, P. Boulanger, et al. Comput. Phys. Commun. 180 (12), 2582 (2009). Crossref
18. www.abinit.org.
19. G. M. Chechin, D. A. Sizintsev, O. A. Usoltsev. Lett. on Mater. 6 (4), 309 (2016). Crossref

Funding

1. Ministry of Science and Higher Education of the Russian Federation - state assignment grant No. 3.5710.2017 / 8.9