Gas-abrasive wear resistance of silicon and boron carbonitride films

V.R. Shayapov, V.S. Sulyaeva, Y.M. Rumyantsev, M.N. Khomyakov, M.L. Kosinova show affiliations and emails
Received 13 June 2017; Accepted 03 July 2017;
This paper is written in Russian
Citation: V.R. Shayapov, V.S. Sulyaeva, Y.M. Rumyantsev, M.N. Khomyakov, M.L. Kosinova. Gas-abrasive wear resistance of silicon and boron carbonitride films. Lett. Mater., 2017, 7(3) 272-277
BibTex   https://doi.org/10.22226/2410-3535-2017-3-272-277

Abstract

Gas-abrasive wear resistance of silicon carbonitride SiCxNyHz and boron carbonitride BCxNy films obtained by CVD methods was studied.Gas-abrasive wear resistance of silicon carbonitride SiCxNyHz and boron carbonitride BCxNy films obtained by chemical vapor deposition (CVD) method was studied. Wear resistance tests were carried out in a flux of sand particles falling on the samples under the gravity action. Scanning electron microscopy, scanning probe microscopy, ellipsometry and spectrophotometry were used to detect the surface modifications occurred during this treatment. In addition, early published data on the physical and chemical properties of the films are involved for interpreting the results of gas-abrasive tests. The SiCxNyHz films were obtained by plasma-enhanced CVD from the mixture of hexamethyldisilazane vapor and helium at deposition temperatures 100 – 800°C and pressure 0.05 Torr. It was found that gas-abrasive wear resistance of the films increased with the deposition temperature due to the changes in a chemical composition of the films towards the hard SiCxNy material. BCxNy films were synthesized by low-pressure CVD from triethylamine borane vapor and its mixture with ammonia (ratio of partial pressures 1 : 1). Deposition temperature was 700°C. There is a difference in destruction mechanisms of the films deposited from these compositions of the initial gas mixture. The surface of films synthesized from triethylamine borane vapor and treated with sand particles shows destroyed and undamaged areas similar to the SiCxNyHz films. When ammonia is added to the initial gas mixture, the surface of the treated films acquires a specific appearance with lots of scratches. These changes are associated with a decrease in the hardness and Young's modulus of the BCxNy films due to the nitrogen concentration enhancement.

References (16)

1. V. I. Biryukov, V. N. Vinogradov, M. M. Martirosyan, V. N. Mihaylychev. Abrasive wear of gas production equipment. Moscow, Nedra. (1977) 207 p. (in Russian) [В. И. Бирюков, В. Н. Виноградов, М. М. Мартиросян, В. Н. Михайлычев. Абразивное изнашивание газопромыслового оборудования. М.: Недра, 1977. 207 с.].
2. Energy from the Desert: Feasability of Very Large Scale Photovoltaic Power Generation (VLS-PV) Systems. Ed. by K. Kurokawa. New-York, Earthscan. (2013) 193 p.
3. H. Niederwald, S. Laux, M. Kennedy, U. Schallenberg, A. Duparré, M. Mertin, N. Kaiser, D. Ristau. Appl. Opt. 38(16), 3610 - 3613 (1999). Crossref
4. P. H. Shipway, L. M. Hutchings. Wear. 193, 105 - 113 (1996). Crossref
5. K. Haugen, O. Kvernvold, A. Ronold, R. Sandberg. Wear. 186 - 187, 179 - 188 (1995). Crossref
6. B. A. Uryukov, G. V. Tkachenko. Powder Metall. Met. Ceram. 49, 581 - 587 (2011), [Б. А. Урюков, Г. В. Ткаченко // Порошковая металлургия. 2010. № 9 - 10. С. 111 - 118.]. Crossref
7. C. Y. Wong, Ch. Solnordal, A. Swallow, S. Wang, L. Graham, J. Wu. Wear. 276 - 277, 1 - 15 (2012). Crossref
8. E. A. Sereda, V. G. Kopchenkov. Industrial laboratory. Diagnostics of materials. 72(10), 53 - 56 (2010) (in Russian) [Е. А. Середа, В. Г. Копченков. // Заводская лаборатория. Диагностика материалов. 2006. Т. 72. № 10. С. 53 - 56.].
9. M. L. Kosinova, N. I. Fainer, V. S. Sulyaeva, Yu. M. Rumyantsev, F. A. Kuznetsov, E. A. Maximovskii, Z. Cao, M. Terauchi, K. Shibata, F. Satoh. Proc. Fifteenth European Conference on Chemical Vapor Deposition (EUROCVD-15). 2005 - 09, 1082 - 1087 (2005).
10. V. R. Shayapov, M. N. Khomyakov, Yu. M. Rumyantsev. Letters on materials. 4(2), 114 - 116 (2014).
11. V. R. Shayapov, Yu. M. Rumyantsev, N. I. Fainer, B. M. Ayupov. Russ. J. Phys. Chem. A. 86(11), 1714 - 1718 (2012), [В. Р. Шаяпов, Ю. М. Румянцев, Н. И. Файнер, Б. М. Аюпов // Журнал физической химии. 2012. Т. 86. № 11. С. 1841 - 1846.]. Crossref
12. V. R. Shayapov, Yu. M. Rumyantsev, P. E. Plyusnin. High Energ. Chem. 50(3), 213 - 218 (2016), [В. Р. Шаяпов, Ю. М. Румянцев, П. Е. Плюснин // Химия высоких энергий. 2016. Т. 50. № 3. С. 221 - 226.]. Crossref
13. V. R. Shayapov, M. L. Kosinova, A. P. Smirnov, E. A. Maksimovskii, B. M. Ayupov, Yu. M. Rumyantsev. Inorg. Mater. 47(3), 262 - 266 (2011), [В. Р. Шаяпов, М. Л. Косинова, А. П. Смирнов, Е. А. Максимовский, Б. М. Аюпов, Ю. М. Румянцев // Неорганические материалы. 2010. Т. 47. № 3. С. 312 - 316.]. Crossref
14. V. V. Atuchin, B. M. Ayupov, V. A. Kochubey, L. D. Pokrovsky, C. V. Ramana, Yu. M. Rumiantsev. Opt. Mater. 30(7), 1145 - 1148 (2008). Crossref
15. B. M. Ayupov, Yu. M. Rumyantsev, V. R. Shayapov. J. Surf. Invest. 4(3), 452 - 457 (2010), doi: 0.1134 / S1027451010030158. [Б. М. Аюпов, Ю. М. Румянцев, В. Р. Шаяпов // Поверхность. 2010. № 5. С. 100 - 105.].
16. B. M. Ayupov, I. A. Zarubin, V. A. Labusov, V. S. Sulyaeva, V. R. Shayapov. J. Opt. Technol. 78(6), 350 - 354 (2011), [Б. М. Аюпов, И. А. Зарубин, В. А. Лабусов, В. С. Суляева, В. Р. Шаяпов // Оптический журнал. 2011. Т. 78. № 6. С. 3 - 9.]. Crossref

Similar papers