Fine structure of transition layer formed between NiAl melt and W substrate during self-propagating high-temperature synthesis

A.S. Shchukin, A.E. Sytschev
Received: 12 April 2017; Revised: 06 June 2017; Accepted: 08 June 2017
This paper is written in Russian
Citation: A.S. Shchukin, A.E. Sytschev. Fine structure of transition layer formed between NiAl melt and W substrate during self-propagating high-temperature synthesis. Letters on Materials, 2017, 7(3) 244-248
BibTex   DOI: 10.22226/2410-3535-2017-3-244-248

Abstract

Ni-Al intermetallic was joined to a tungsten substrate by using the technique of SHS welding. A transition layer whith complex gradient structure about 400 μm thick was found to contain W based dendrites, pseudo-binary NiAl-W eutectic, and the precipitates of W containing phase below 50 nm in their size. In order to better understand the morphology of the transition layer, acid leaching with 4 % HCl – 3 % H2O2 aqueous solution was used to remove a NiAl layer from the burned sample, leaving intact the W based phases and W. The presence of the symmetry axes of the first, second, and third order in the dendrites is indicative of a low crystallization rate. In leached samples, the transition zone exhibited the presence of the branching bundles of W containing fibers around 10 μm long and 50 nm in diameter. On the surface of leached samples, there were the columnar dendrites oriented normally to the surface and the globules of the W based phase (80 – 86  at.  % W, 16 – 14  at.  % Ni and 0 – 4  at.  % Al). The above structure of the transition zone explains strong joining between the W substrate and SHS produced NiAl.

References (29)

1.
S. Milenkovic, A. Schneider, G. Frommeyer. Intermetallics. 19(3), 342 – 349 (2011), doi: 10.1016 / j.intermet.2010.10.019
2.
A. W. Hassel, A. J. Smith, S. Milenkovic. Electrochimica Acta. 52(4), 1799 – 1804 (2006), doi: 10.1016 / j.electacta.2005.12.061
3.
A. W. Hassel, B. Bello-Rodriguez, A. J. Smith, Y. Chen, S. Milenkovic. Phys. Status Solidi B. 247(10), 2380 – 2392 (2010), doi: 10.1002 / pssb.201046433
4.
S. Milenkovic, S. Drensler, A. W. Hassel. Phys. Status Solidi A. 208(6), 1259 – 1264 (2011), doi: 10.1002 / pssa.201000968
5.
C. Fenster, A. J. Smith, A. Abts, S. Milenkovic, A. W. Hassel. Electrochemistry Communications. 10(8), 1125 – 1128 (2008), doi: 10.1016 / j.elecom.2008.05.008
6.
V. Cimalla et al. Journal of Nanomaterials. 2008, Article ID 638947 (2008), doi: 10.1155 / 2008 / 638947
7.
C. Zener. Trans. Met. Soc. AIME. 167, 550 – 595 (1946)
8.
J. D. Hunt, K. A. Jackson. Trans. Met. Soc. AIME. 236, 843 – 852 (1966)
9.
K. A. Jackson, J. D. Hunt. Trans. Met. Soc. AIME. 236, 1129 – 1141 (1966)
10.
B. E. Sundquist. Metall. Trans. 4, 1919 – 1934 (1973)
11.
M. Hillert. Acta Metall. 30, 1689 – 1696 (1982)
12.
H. E. Cline. Appl. Phys. Lett. 37, 1098 – 1100 (1980), doi: 10.1063 / 1.91886
13.
E. Brener, H. Müller-Krumbhaar, D. Temkin. Europhysics Letters. 17(6), 535 – 540 (1992), doi: 10.1209 / 0295 – 5075 / 17 / 6 / 010
14.
K. Kassner. Pattern formation in diffusion-limited crystal growth. Singapore: World Scientific. (1996), doi: 10.1142 / 9789812832023
15.
S. Milenkovic, A. W. Hassel, A. Schneider. Nano Letters. 6(4), 794 – 799 (2006), doi: 10.1021 / nl0514238
16.
S. Milenkovic, A. Coelho, R. Caram. Journal of Crystal Growth. 211(1-4), 485 – 490 (2000), doi: 10.1016 / S0022–0248 (99) 00783 – 6
17.
S. Milenkovic, R. Caram. Journal of Materials Processing Technology. 143 – 144, 629 – 635 (2003), doi: 10.1016 / S0924–0136 (03) 00449 – 7
18.
S. Takamura, N. Ohno, D. Nishijima, S. Kajita. Plasma and Fusion Research: Rapid Communications. 1, 51 (2006), doi: 10.1585 / pfr.1.051
19.
Yu. V. Martynenko, M. Yu. Nagel’. Plasma Physics Reports. 38(12), 996 – 999 (2012), doi: 10.1134 / S1063780X12110074
20.
A. E. Sytschev, D. Vrel, Yu. R. Kolobov, D. Yu. Kovalev, E. V. Golosov, A. S. Shchukin, S. G. Vadchenko. Int. Journal of SHS. 22(2), 110 – 113 (2013), doi: 10.3103 / S1061386213020118
21.
A. E. Sytschev, D. Vrel, Yu. R. Kolobov, I. D. Kovalev, E. V. Golosov, A. S. Shchukin, S. G. Vadchenko. Kompozity i nanostruktury. 2, 51 – 58 (2013). (in Russian) [А. Е. Сычев, D. Vrel, Ю. Р. Колобов, И. Д. Ковалев, Е. В. Голосов, А. С. Щукин, С. Г. Вадченко. Композиты и наноструктуры. 2, 51 – 58 (2013).]
22.
P. Brož, J. Buršík, Z. Stará. Monatshefte für Chemie. 136(11), 1915 – 1920 (2005), doi: 10.1007 / s00706‑005‑0391‑y
23.
K. Kornienko, V. Kublii, O. Fabrichnaya, N. Bochvar. Al-Ni-W (Aluminium — Nickel — Tungsten). In: Light Metal Systems. Part 3. Landolt-Börnstein — Group IV Physical Chemistry. (2005), doi: 10.1007 / 10915998_34
24.
V. I. Itin, Yu. S. Naiborodenko. High-temperature synthesis of intermetallic compounds. Tomsk: Tomsk. Univ. (1989) 214 p. (in Russian) [В. И. Итин, Ю. С. Найбороденко. Высокотемпературный синтез интерметаллических соединений. 1989. 214 с.]
25.
N. P. Lyakishev. Constitution diagrams of binary metallic systems. Moskow: Mashinostroenie. 3 – 1, (1996) 872 p. (in Russian) [Н. П. Лякишев. Диаграммы состояния двойных металлических систем. М.: Машиностроение. 3 – 1, 1996. 872 с.]
26.
N. P. Lyakishev. Constitution diagrams of binary metallic systems. Moskow: Mashinostroenie. 1, (1996) 992 p. (in Russian) [Н. П. Лякишев Диаграммы состояния двойных металлических систем. М.: Машиностроение. 1, 1996. 992 с.]
27.
ASM Handbook. Vol. 3. Alloy Phase Diagrams. (1992) 1741 p.
28.
A. S. Shchukin, S. G. Vadchenko, A. E. Sytschev. Universities’ Proceedings. Powder Metallurgy and Functional Coatings. 2, 72 – 78 (2017). (in Russian) [А. С. Щукин, С. Г. Вадченко, А. Е. Сычёв. Известия вузов. Порошковая металлургия и функциональные покрытия. 2, 72 – 78 (2017).]
29.
M. C. Flemings. Solidification processing. McGraw-Hill Book Company, New York. (1974)