Low-melting zirconium alloys

A.M. Savchenko, Y.V. Konovalov, A.V. Laushkin, O.I. Yuferov show affiliations and emails
Received 30 March 2017; Accepted 13 June 2017;
This paper is written in Russian
Citation: A.M. Savchenko, Y.V. Konovalov, A.V. Laushkin, O.I. Yuferov. Low-melting zirconium alloys. Lett. Mater., 2017, 7(3) 229-233
BibTex   https://doi.org/10.22226/2410-3535-2017-3-229-233


A novel class of low-melting Zr-based alloys has been developed. These are deep triple and quadruple eutectics with melting points from 690 to 860°C, which are very low for zirconium. Projections of the crystallization areas in the Zr-rich corner of Zr-Be-Fe and Zr-Cu-Fe systems are given. Apart from eutectic zirconium alloys, hypoeutectic alloys, in which the melting point changes not significantly, but the ductility is greatly enhanced, can also be used. An important feature of these alloys is the possibility of additional alloying up to 3 to 5 mass per cent retaining the low melting temperature. As alloying elements, Nb, Cu, Al, Mo, Si etc. can be used. The additional alloying can be done to enhance the corrosion resistance, castability, capillary properties and improve the neutron-physics characteristics. The temperature coefficient of linear expansion and thermal conductivity of alloys is higher than that of zirconium. Corrosion resistance in water and superheated steam remained high, characteristic of zirconium alloys. Capillary properties of alloys are very high, so they can be used as cast ones as well as a solder for brazing of different materials. These alloys can be also produced in an amorphous state as granules and strips. They can be used as hydrides for hydrogen accumulation too. It is promising to use the low-melting Zr-based alloys proposed in nuclear engineering as matrix materials for dispersion fuel elements. The fuel compositions including these alloys have a high thermal conductivity and compatibility and uranium level 30 to 50 % higher than in the fuel elements of VVER and PWR reactors. The use of new dispersion fuel can lead to improved neutron-physical characteristics of the reactors, increase burn-out, reduce fuel temperature and improve fuel efficiency.

References (10)

1. A. S. Zaimovsky, A. V. Nikulina, N. G. Reshetnikov. Zirconium alloys in atomic energy. Moscow, Energoatomizdat (1994) 252 p. (in Russian) [А. С. Займовский, А. В. Никулина, Н. Г. Решетников. Циркониевые сплавы в ядерной энергетике. М.: Энергоатомиздат, 1994. 252 с.].
2. D. L. Douglass. Metallurgy of zirconium. Vienna. International Atomic Energy Agency (1971) (in Russian) [Д. Дуглас. Металловедение циркония. Пер. с англ. под ред. А. С. Займовского М.: Металлургиздат, 1975, 360 c.].
3. A. V. Nikulina. Zirconium alloys in atomic energy. Metal science and heat treatment, 11, 8 - 12, 2004 (in Russian) [А. В. Никулина Циркониевые сплавы в атомной энергетике. Металловедение и термическая обработка металлов, 11, 2004, с. 8 - 12].
4. A. Savchenko, I. Konovalov, A. Vatulin, A. Morozov, V. Orlov, O. Uferov, S. Ershov, A. Laushkin, G. Kulakov, S. Maranchak, Z. Petrova. Dispersion type zirconium matrix fuels fabricated by capillary impregnation method. J. of Nucl. Mater., 362, 356 - 363 (2007).
5. A. M. Savchenko, A. V. Vatulin, A. V. Morozov, G. V. Kulakov, S. A. Ershov, A. V. Laushkin, S. V. Maranchak, Y. V. Konovalov, E. K. Malamanova. Zirconium matrix alloys as innovative material for different types of fuel. Progr. in Nucl. Energy, 2012, 57, 138 - 144 (2012).
6. Binary Alloy Phase Diagrams. Handbook. Ed. by N. P. Lyakishev. V. 2. Moscow, Mashinostroenie (1997) 1024 p. (in Russian) [Диаграммы состояния двойных металлических систем: Справочник. В 3-х т.: Т. 2 под общей редакцией Н. П. Лякишева. - М.: Машиностроение, 1997, 1024 с.].
7. Binary Alloy Phase Diagrams. Handbook. Ed. by N. P. Lyakishev. V. 1. Moscow, Mashinostroenie (1996) 992 p. (in Russian) [Диаграммы состояния двойных металлических систем: Справочник. В 3-х т.: Т. 1 под общей редакцией Н. П. Лякишева. - М.: Машиностроение, 1996, 992 с.].
8. Physical chemistry of zirconium alloys. Ed. by O. S. Ivanov. Moscow, Nauka (1968) 277 p. (in Russian) [Физико-химия сплавов циркония. Под редакцией О. С. Иванова. М.: Наука, 1968, 277 с.].
9. A. G. Samoilov, A. I. Kashtanov, V. S. Volkov. Dispersion fuel elements. Materials and technology. Moscow, Energoatomizdat (1982) 224 p. (in Russian) [А. Г..Самойлов, А. И. Каштанов, В. С. Волков Дисперсионные твэлы. Материалы и технология. М.: Энергоатомиздат, 1982. 224 с.].
10. A. Savchenko, A. Vatulin, I. Konovalov, A. Morozov, V. Sorokin, S. Maranchak. Fuel of Novel Generation for PWR and as Alternative to MOX Fuel. J. of Energy Conversion & Management, 51, 1826 - 1833 (2010).

Cited by (1)

A. Z. Alhmoud, V. B. Kruglov, H. A. Tanash. GNS. , 97 (2020). Crossref