Phase and structural transformations in a nanocrystalline alloy Fe72.5Cu1Nb2Mo1.5Si14B9

N.N. Nikul’chenkov, A.S. Yurovskikh, Y.N. Starodubtsev, M.L. Lobanov show affiliations and emails
Received: 29 October 2018; Revised: 01 December 2018; Accepted: 09 December 2018
This paper is written in Russian
Citation: N.N. Nikul’chenkov, A.S. Yurovskikh, Y.N. Starodubtsev, M.L. Lobanov. Phase and structural transformations in a nanocrystalline alloy Fe72.5Cu1Nb2Mo1.5Si14B9. Lett. Mater., 2019, 9(1) 64-69
BibTex   https://doi.org/10.22226/2410-3535-2019-1-64-69

Abstract

The possibility of applying structural units model was analyzed to describe amorphous state based on matching x-ray diffraction data with heating values using the example Finemet-type alloy (Fe72.5Cu1Nb2Mo1.5Si14B9).The material for investigation was a ribbon with an amorphous structure obtained by the melt spinning technique from a melt of molybdenum-modified Finemet-type high-permeability Fe72.5Cu1Nb2Mo1.5Si14B9 alloy. Using the methods of non-ambient X-ray diffraction, calorimetry, and dilatometry, temperature intervals of transformations during the transition of material from the amorphous state to the nanocrystalline one with subsequent recrystallization were determined. Each method was characterized by its own heating rate: 1 K / min for the non-ambient X-ray diffraction, 30 K / min for calorimetry, and 20 K / min for dilatometry. Regardless of the heating rate, phase and structure transformations (crystallization and recrystallization, respectively) were observed sequentially. With decreasing heating rate, the crystallization temperature significantly decreased and the recrystallization temperature slightly decreased. Specific heats of crystallization (386 kJ / mol) and recrystallization (88 kJ / mol) were calculated from calorimetry data. Basing on the results of X-ray diffraction and calorimetric studies, the possibility of using the structural unit model was analyzed to describe the amorphous state. It was supposed that any condensed state of the material (amorphous, nanocrystalline and recrystallized) were distinguished by different sizes of coherent scattering regions (CSRs). The lower estimate of coherent scattering regions size was made from the X-ray diffraction halo width for the amorphous state and (110) diffraction line broadening for polycrystals. The Wigner-Seitz cell (truncated octahedron) containing one atom has been adopted as a structural unit. Specific heats of transformations were compared to the values of energies related to the transitions of atoms from CSR borders to lattice sites. Satisfactory applicability of the structural unit model for the description of the amorphous state was demonstrated.

References (21)

1. P. Duwes, R. H. Willens, W. Klement. Jr. Nature. 187, 869 (1960). Crossref
2. V. A. Milyutin, I. V. Gervaseva, V. S. Gaviko, E. G. Volkova, E. C. Beaugnon. Phys. Met. Metallogr. 118 (5), 493 (2017). (In Russian) [В. А. Милютин, И. В. Гервасьева, E. Beaugnon, В. С. Гавико, Е. Г. Волкова. ФММ. 118 (5), 493 (2017).]. Crossref
3. V. S. Tsepelev, Yu. N. Starodubtsev, V. A. Zelenin, V. A. Kataev, V. Ya, Belozerov, V. V. Konashkov. Phys. Met. Metallogr. 118 (6) 584 (2017). (In Russian) [В. С. Цепелев, Ю. Н. Стародубцев В. А. Зеленин, В. А. Катаев, В. Я. Белозеров, В. В. Конашков. ФММ. 118 (6), 584 (2017).]. Crossref
4. R. Goldstein, D. Lisovenko, A. Chentsov, S. Lavrentyev. Letters on Materials. 7 (4), 355 (2017). (In Russian) [Р. В. Гольдштейн, Д. С. Лисовенко, А. В. Ченцов, С. Ю. Лаврентьев. Письма о материалах. 7 (4), 355 (2017). Crossref
5. C. Suryanarayana, A. Inoue. Inter. Mater. Rev. 58 (3), 131 (2013). Crossref
6. Yu. Starodubtsev, V. Belozerov. Komponenty i tekhnologii. (4), 144 (2007). (In Russian) [Ю. Стародубцев, В. Белозеров. Компоненты и технологии. (4) 144 (2007).].
7. Y. Yoshizawa, S. Oguma, K. Yamauchi. J. Appl. Phys. 64 (10), 6044 (1988). Crossref
8. Y Yoshizawa, K. Yamauchi. Mater. Trans. 31 (4), 307 (1990). Crossref
9. G. Herzer. In: Handbook of magnetic materials (K. H. J. Buschow). Hanau, Elsevier. (1997). 3 (10) P. 415 - 462. Crossref
10. Y. Q. Cheng, E. Ma. Progr. Mater. Sci. 56 (4), 379 (2011). Crossref
11. L. Son, R. Ryltcev, V. Sidorov, D. Sordelet. Mater. Sci. Eng. 449 - 451, 582 (2007). Crossref
12. D. V. Louzguine , V. I. Pol’kin. Izv. vuzov. Tsvet. metallurgiya. (6), 43 (2015). (In Russian) [Д. В. Лузгин, В. И. Полькин. Изв. вузов. Цвет. металлургия. (6), 43 (2015).]. Crossref
13. D. B. Miracle, D. V. Louzguine-Luzgin, L. V. Louzguina-Luzgina, A. Inoue. Inter. Mater. Rev. 55 (4), 219 (2010). Crossref
14. V. A Polukhin, D. Kurbanova, N. A. Vatolin. Melts. 5, 337 (2017). (In Russian) [В. А Полухин, Э. Д. Курбанова, Н. А. Ватолин. Расплавы. (5), 337 (2017).].
15. V. S. Kraposhin. A. A. Talis. Melts. (2), 85 (2016). (In Russian) [В. С. Крапошин, А. А. Талис. Расплавы. 2, 85 (2016).].
16. Yu. N. Starodubtsev, V. Ya. Belozerov. Magnitnye svoistva amorphnykh i nanokristallycheskikh splavov. Ekaterinburg, Izdatelstvo Uralskogo Universiteta (2002) 366 p. (In Russian) [Ю. Н. Стародубцев, В. Я. Белозеров Магнитные свойства аморфных и нанокристаллических сплавов. Екатеринбург, Изд-во Урал. ун-та. (2002) 366 c.].
17. A. K. Shtolts, A. I. Medvedev, L. V. Kurbatov. Rentgenovskii analiz mikronapryazhenii i razmera oblastei kogerentnogo rasseyaniya v polikritallicheskikh materialakh. Ekaterinburg, UGTU-UPI (2005) 23 p. (In Russian) [А. К Штольц, А. И. Медведев, Л. В. Курбатов. Рентгеновский анализ микронапряжений и размера областей когерентного рассеяния в поликристаллических материалах. Екатеринбург, УГТУ-УПИ. (2005) 23 с.].
18. C. F. Conde, A. Conde. NanoStuctured Mat. 6 (1-4), 457 (1995). Crossref
19. O. A. Kaibyshev, R. Z. M. Valiyev. Granitsy zeren i svoistva metallov. Moskva, Metallyrgiya (1987) 214 p. (In Russian) [О. А. Кайбышев, Р. З. М. Валиев. Границы зерен и свойства металлов. Москва, Металлургия. (1987) 214 с.].
20. G. M. Rusakov, M. L. Lobanov, A. A. Redikul’tsev, A. S. Belyaevskikh. The Phys. of Met. and Metallogr. 115 (8), 775 (2014). Crossref
21. M. L. Lobanov, S. V. Danilov, V. I. Pastukhov, S. A. Averin, Y. Y. Khrunyk, A. A. Popov. Mat. and Design. 109, 251 (2016). Crossref