The investigation of the evolution of diffusional properties of nonequilibrium grain boundaries during annealing of submicrocrystalline materials

V.N. Perevezentsev, A.S. Pupynin ORCID logo , A.E. Ogorodnikov show affiliations and emails
Received 29 October 2018; Accepted 23 November 2018;
Citation: V.N. Perevezentsev, A.S. Pupynin, A.E. Ogorodnikov. The investigation of the evolution of diffusional properties of nonequilibrium grain boundaries during annealing of submicrocrystalline materials. Lett. Mater., 2019, 9(1) 107-112
BibTex   https://doi.org/10.22226/2410-3535-2019-1-107-112

Abstract

A model is proposed to describe a change of grain boundaries nonequilibrium state and its diffusive properties during low-temperature annealing of submicrocrystalline materials containing, in the initial state, a system of grain-boundary nano-cavities. It is shown that non-equilibrium state of grain boundaries can be maintained for a long time of low-temperature annealing.A model is proposed that allows one to describe a change in the nonequilibrium state and diffusion properties of grain boundaries during low-temperature annealing of submicrocrystalline materials containing in the initial state a system of grain-boundary nano-cavities. It is shown that the dissolution of grain-boundary cavities during annealing leads to the emission of vacancies from the cavities into the grain boundaries and to an increase in the nonequilibrium free volume of the grain boundaries. As a result, the coefficient of grain-boundary diffusion, which is exponentially dependent on the value of the free volume of grain boundaries, also changes. The influence of the initial value of the volume fraction of grain-boundary cavities and the initial value of the nonequilibrium free volume of grain boundaries on the kinetics of cavity dissolution and the dependence of the grain-boundary diffusion coefficient on the annealing time is analyzed. It is established that this dependence has three stages. The first stage is characterized by a slow increase in the coefficient of grain-boundary diffusion due to the fact that the process of vacancies emission into the grain boundaries associated with the dissolution of cavities is equalized by the outflux of nonequilibrium vacancies from the boundaries into the grain volume. The short-term second stage is characterized by a sharp increase in the coefficient of grain-boundary diffusion and is associated with the rapid collapse of the cavities when they reach a critical radius. At this stage, the coefficient of grain-boundary diffusion may exceed by 1– 2 orders of magnitude its value for the equilibrium grain boundaries. The third stage is characterized by a slow decrease of the diffusion coefficient and is associated with the outflux of nonequilibrium vacancies into the grain volume. Thus, contrary to the prevailing ideas that annealing is always accompanied by the transition of grain boundaries into a more equilibrium state, it has been shown that in the case of low-temperature annealing of submicrocrystalline materials containing in the initial state grain boundary cavities, the reverse process can occur, i. e. an increase in the nonequilibrium state of grain boundaries caused by a change of its nonequilibrium free volume during the dissolution of cavities. It is shown that the nonequilibrium state of grain boundaries can be maintained for a long time of annealing.

References (35)

1. R. Z. Valiev, I. V. Aleksandrov. Nanostructured materials processed by the methods of severe plastic deformation. Moscow, Logos. (2000). 272 p. (in Russian). ) [Р. З. Валиев, И. В. Александров. Наноструктурные материалы, полученные интенсивной пластической деформацией. Москва, Логос. (2000). 272 с.].
2. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya et al. Grain boundary diffusion and properties of nanostructured materials. Novosibirsk, Nauka. (2001). 232 p. (in Russian). [Ю. Р. Колобов, Р. З. Валиев, Г. П. Грабовецкая и др. Зернограничная диффузия и свойства наноструктурных материалов. Новосибирск, Наука. (2001). 232 с.].
3. V. I. Betekhtin, Yu. R. Kolobov, V. Sklenicka, A. G. Kadomtsev, M. V. Narykova, J. Dvorak, E. V. Golosov, B. K. Kardashev, I. N. Kuz’menko. Tech. Phys. 60, 66 (2015). Crossref
4. V. I. Betekhtin, V. Sklenička, A. G. Kadomtsev, Yu. R. Kolobov, M. V. Narykova. Phys. Solid State. 59, 960 (2017). Crossref
5. Yu. R. Kolobov, G. P. Grabovetskaya, I. V. Ratochka, K. V. Ivanov. Russ. Phys. Journ. 41, 260 (1998). Crossref
6. Yu. R. Kolobov, G. P. Grabovetskaya, K. V. Ivanov, N. V. Girsova. Phys. Metals Metallogr. 90 No. 5, 105 (2001). (in Russian). [Ю. Р. Колобов, Г. П. Грабовецкая, К. В. Иванов, Н. В. Гирсова. ФММ. 90, № 5, 105 (2001).].
7. Yu. R. Kolobov, G. P. Grabovetskaya, K. V. Ivanov, M. B. Ivanov. Interface Sci. 10, 31 (2002). Crossref
8. Yu. R. Kolobov, G. P. Grabovetskaya, K. V. Ivanov. Ann. Chim. Sci. Mat. 27, 89 (2002).
9. G. P. Grabovetskaya. Phys. Mesomech. 8. No. 2, 49 (2005). (in Russian). [Г. П. Грабовецкая. ФМ. 8, № 2, 49 (2005).].
10. V. N. Perevezentsev, M. Yu. Scherban’, T. A. Gracheva, T. A. Kuz’micheva. Tech. Phys. 60, 1167 (2015).
11. V. I. Betekhtin, A. G. Kadomtsev, V. Sklenicka, I. Saxl. Phys. Solid State, 49, 1874 (2007). Crossref
12. V. I. Betekhtin, V. Sklenicka, I. Saxl, B. K. Kardashev, A. G. Kadomtsev, M. V. Narykova. Phys. Solid State. 52, 1629 (2010). Crossref
13. V. I. Betekhtin, E. D. Tabachnikova, A. G. Kadomtsev, M. V. Narykova, R. Lapovok. Tech. Phys. Lett. 37, 767 (2011). Crossref
14. V. V. Mishakin, V. N. Perevezentsev, M. Yu. Scherban’, V. A. Klyushnikov, T. A. Gracheva, T. A. Kuz’micheva. Russ. J. Nondestr. Testing. 6, 57 (2015). (in Russian). [В. В. Мишакин, В. Н. Перевезенцев, М. Ю. Щербань, В. А. Клюшников, Т. А. Грачева, Т. А. Кузьмичева. Дефектоскопия. 6, 57 (2015).].
15. X. Sauvage, R. Pippan. Mater. Sci. Eng. A, 410 - 411, 345 (2005). Crossref
16. J. Ribbe, D. Baither, G. Schmitz, S. V. Divinski. Scripta Mater. 61, 129 (2009). Crossref
17. V. I. Betekhtin, E. D. Tabachnikova, A. G. Kadomtsev, M. V. Narykova, R. Lapovok. Tech. Phys. Lett. 37, 767 (2011). Crossref
18. J. Čížek, M. Janeček, O. Srba, R. Kužel, Z. Barnovská, I. Procházka, S. V. Dobatkin. Acta Mater. 59, 2322 (2011). Crossref
19. J. Čížek, I. Procházka, M. Cieslar, I. Stuliková, F. Chmelik, R. K. Islamgaliev. Phys. Stat. Solidi (a). 191, 391 (2002). <391::AID-PSSA391>3.0.CO;2-H. Crossref
20. S. Van Petegem, F. Dalla Torre, D. Segers, H. Van Swygenhoven. Scripta Mater. 48, 17 (2003). Crossref
21. S. V. Divinski, G. Reglitz, H. Rosner, Y. Estrin, G. Wilde. Acta Mater. 59, 1974 (2011). Crossref
22. R. Lapovok, D. Tomus, J. Mang, Y. Estrin, T. C. Lowe. Acta Mater. 57, 2909 (2009). Crossref
23. V. I. Betekhtin, Yu. R. Kolobov, M. V. Narykova, B. K. Kardashev, E. V. Golosov, A. G. Kadomtsev. Tech. Phys. 56, 1599 (2011). Crossref
24. I. A. Ovid’ko, A. G. Sheinerman, N. V. Skiba. Acta Mater. 59, 678 (2011). Crossref
25. L. Klinger, E. Rabkin, L. S. Shvindlerman, G. Gottstein. J. Mater. Sci. 43, 5068 (2008). Crossref
26. J. Ribbe, G. Schmitz, D. Gunderov, Y. Estrin, Y. Amouyal, G. Wilde, S. V. Divinski. Acta Mater. 61, 5477 (2013). Crossref
27. V. N. Perevezentsev, A. S. Pupynin, A. E. Ogorodnikov. Tech. Phys. 63, 1492 (2018). Crossref
28. V. V. Rybin, A. A. Zisman, N. Yu. Zolotorevsky. Acta metall. mater. 41, 2211 (1993). Crossref
29. V. N. Perevezentsev, V. V. Rybin. Structure and properties of grain boundaries. Nizhni Novgorod, Lobachevsky State University of Nizhni Novgorod. (2012). 307 p. (in Russian). [В. Н. Перевезенцев, В. В. Рыбин. Структура и свойства ГЗ. Нижний Новгород, Изд-во Нижегородского госуниверситета им. Н. И. Лобачевского (2012). 307 с.].
30. S. V. Kirikov, V. N. Perevezentsev, Yu. V. Svirina. Deformation and fracture of materials. 3, 20 (2018). (in Russian). [С. В. Кириков, В. Н. Перевезенцев, Ю. В. Свирина. Деформация и разрушение материалов. 3, 20 (2018).].
31. V. N. Perevezentsev. Phys. Metals Metallogr. 93, No. 3, 15 (2002). (in Russian). [В. Н. Перевезенцев. ФММ. 93, № 3, 15 (2002).].
32. V. N. Perevezentsev, A. S. Pupynin, Yu. V. Svirina. Phys. Metals Metallogr. 100, No. 1, 17 (2005). (in Russian). [В. Н. Перевезенцев, А. С. Пупынин, Ю. В. Свирина. ФММ. 100, № 1, 17 (2005).].
33. V. N. Perevezentsev, A. S. Pupynin, Yu. V. Svirina. Mater. Sci. Eng. A. 410 - 411, 273 (2005). Crossref
34. V. N. Perevezentsev, A. S. Pupynin. Tech. Phys. Lett. 37, 287 (2011). Crossref
35. H. J. Frost, M. F. Ashby. Deformation-Mechanism Maps. Chelyabinsk, Metallurgy. (1989). 328 p. (in Russian). [Г. Дж. Фрост, М. Ф. Эшби Карты механизмов деформации. Пер. с англ. под ред. Берштейна Л. М. Челябинск: Металлургия, Челябинское отделение, 1989, 328 с.].

Cited by (3)

1.
L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina. Phys. Metals Metallogr. 122(6), 559 (2021). Crossref
2.
Yu. R. Kolobov, S. S. Manokhin, G. V. Odintsova, V. I. Betekhtin, A. G. Kadomtsev, M. V. Narykova. Tech. Phys. Lett. 47(10), 721 (2021). Crossref
3.
K. Shugaev, M. Degtyarev, L. Voronova, T. Chashchukhina, T. Gapontseva. Lett. Mater. 12(2), 94 (2022). Crossref