Synthesis, structure and properties of K2(1-x)Rb2xAl2B2O7 and Cs1.39Tl0.61Al2B2O7 borates as the basis for preparing new oxide materials

V.G. Grossman, B.G. Bazarov, S.Y. Stefanovich, M.S. Molokeev, J.G. Bazarova show affiliations and emails
Received: 21 October 2018; Revised: 12 November 2018; Accepted: 11 December 2018
Citation: V.G. Grossman, B.G. Bazarov, S.Y. Stefanovich, M.S. Molokeev, J.G. Bazarova. Synthesis, structure and properties of K2(1-x)Rb2xAl2B2O7 and Cs1.39Tl0.61Al2B2O7 borates as the basis for preparing new oxide materials. Letters on Materials, 2019, 9(1) 86-90
BibTex   https://doi.org/10.22226/2410-3535-2019-1-86-90

Abstract

Significant SHG effect  found for K0.6Rb1.4Al2B2O7 at room temperature. The new triple borate Cs1.39Tl0.61Al2B2O7 synthesized and its crystallographic parameters  determined.With the development of technology, the need for highly efficient functional materials is steadily increasing. Currently, borates attract the attention of researchers, as they are promising nonlinear materials. Potassium rubidium aluminum borate based on potassium aluminum borate (trigonal syngony, space group P321, Z = 3) was obtained by solid-phase synthesis. The individuality and purity of the borates were confirmed by X-ray diffraction. Analysis of differential scanning calorimetry and thermogravimetric method for K2(1‑x)Rb2xAl2B2O7 (x = 0.1– 0.8) was performed in the temperature range of 25–1075°С. Potassium rubidium borates decompose in the temperature range of 900 –1000°C. Differential scanning calorimetry, dielectric loss tangent, and second-harmonic generation data revealed phase transitions for K0.6Rb1.4Al2B2O7. A significant SHG effect was found at room temperature for K0.6Rb1.4Al2B2O7 (Q = 70). Then the SHG effect increases to Q = 85 at a temperature of 645°C and remains constant with a further increase in temperature. The new triple borate Cs1.39Tl0.61Al2B2O7 was synthesized by the solid-phase synthesis, and its crystallographic parameters were obtained by the Rietveld method. This borate crystallizes in the monoclinic space group P21 / c with the unit cell parameters: Z = 2, a = 6.6669(3) Å, b = 7.2991(3) Å , c = 9.3589(4) Å , β =116.6795(18)°, V = 406.94(3) Å 3. The structure can be considered to be built up from the nearly planar [Al2B2O10] rings, which are composed of two AlO4 tetrahedra and two BO3 triangles, connected, alternately to each other by corner-sharing.

References

1. C. Chen, Z. Lin, Z. Wang. Applied Physics. 80, 1 (2005). Crossref
2. Z.-G. Hu, M. Yoshimura, Y. Mori, T. Sasaki. J. Crystal Growth. 275 (1), 232 (2005). Crossref
3. P. Becker. Advanced Materials. 10 (13), 979 (1998). <979::AID-ADMA979>3.0.CO;2-N. Crossref
4. Z. G. Hu, Y. Mori, T. Higashiyama, Y. K. Yap, Y. Kagebayash, T. Sasaki. Proceedings of SPIE. 3556, 156 (1998). Crossref
5. N. Ye, W. Zeng, J. Jiang, B. Wu, C. Chen, B. Feng, X. Zhang. Journal of the Optical Society of America B. 17 (5), 764 (2000). Crossref
6. Z. G. Hu, T. Higashiyama, M. Yoshimura, Y. Mori, T. Z. Sasaki. Zeitschrift für Kristallographie - New Crystal Structures. 214 (4), 433 (1999).
7. L. J. Liu, C. L. Liu, X. Y. Wang, Z. G. Hu, R. K. Li, C. T. Chen. Solid State Sciences. 11 (4), 841 (2009). Crossref
8. X. Y. Meng, J. H. Gao, Z. Z. Wang, R. K. Li, C. T. Chen. Journal of Physics and Chemistry of Solids. 66 (10), 1655 (2005). Crossref
9. W. Zhenxiong, Y. Yinchao, W. Lirong, W. Guiling, H. Zhanggui. Optical Materials. 34 (9), 1575 (2012). Crossref
10. M. He, X. L. Chen, H. Okudera, A. Simon. Chemistry of Materials. 17 (8), 2193 (2005). Crossref
11. Y. C. Yue, Z. X. Wu, Z. S. Lin, Z. G. Hu. Solid State Sciences. 13 (5), 1172 (2011). Crossref
12. Y. G. Wang, R. K. Li. Optical Materials. 32 (10), 1313 (2010). Crossref
13. Y. G. Wang, R. K. Li. Journal of Solid State Chemistry. 183 (6), 1221 (2010). Crossref
14. X Wang, R. K. Li. Optical Materials. 45, 197 (2015). Crossref
15. V. V. Atuchin, B. G. Bazarov, T. A. Gavrilova, V. G. Grossman, M. S. Molokeev, Z. G. Bazarova. Journal of Alloys and Compounds. 515, 119 (2012). Crossref
16. V. V. Atuchin, S. V. Adichtchev, B. G. Bazarov, Zh. G. Bazarova, T. A. Gavrilova, V. G. Grossman, V. G. Kesler, G. S. Meng, Z. S. Lin, N. V. Surovtsev. Materials Research Bulletin. 48, 929 (2013). Crossref
17. Q. Huang, L. Liu, M. Xia, Y. Yang, S. Guo, X. Wang, Z. Lin, C. Chen. Crystals. 7, 2 (2017). Crossref
18. F. Kai, Yin Wenlong, Y. Jiyong, W. J. Yicheng. Journal of Solid State Chemistry. 184 (12), 3353 (2011). Crossref
19. R. W. Vest, N. M. Tallan. Journal of Applied Physics. 36, 543 (1965).
20. J. W. Visser. Journal of Applied Crystallography. 2, 89 (1969).
21. M. He, X. L. Chen, T. Zhou, B. Q. Hu, Y. P. Xu, T. Xu. Journal of Alloys and Compounds. 327 (1), 210 (2001). Crossref
22. J. L. Kissick, D. A. Keszler. Acta Crystallographica Section E. 58 (10), 185 (2002). Crossref