Energy and electronic characteristics of silicon polyprismanes: Density functional theory study

M.A. Gimaldinova, K.P. Katin ORCID logo , M.A. Salem, M.M. Maslov ORCID logo
Received: 15 October 2018; Revised: 17 October 2018; Accepted: 18 October 2018
Citation: M.A. Gimaldinova, K.P. Katin, M.A. Salem, M.M. Maslov. Energy and electronic characteristics of silicon polyprismanes: Density functional theory study. Letters on Materials, 2018, 8(4) 454-457
BibTex   DOI: 10.22226/2410-3535-2018-4-454-457

Abstract

Longer silaprismanes are more stable, and their HOMO-LUMO gaps are close to zero.We report structural, energy, and some electronic properties of [n,4]-, [n,5]-, and [n,6]silaprismanes (polysilaprismanes): a special type of silicon nanotubes constructed from dehydrogenated molecules of cyclosilanes (silicon rings) Si4-, Si5, and Si6-rings, respectively. For large n, polysilaprismanes can be considered as the analogs of silicon nanotubes with an extremely small cross-section in the form of a regular polygon. Binding energies, interatomic bonds, and the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been calculated using density functional theory for the systems up to ten layers. It is found that [n,4]silaprismane is not thermodynamically stable in the bulk limit (n  ), while the [n,5]- and [n,6]silaprismanes conserve their highly strained framework and become more thermodynamically stable as the number of layers n increase. Moreover, the HOMO-LUMO gap analysis reveals that the [n,5]- and [n,6]silaprismanes with the large effective length can be referred to semimetals or even the conductors. So, they can be successfully used unlike the carbon analogs in nanoelectronics as the functional nanowires or the basis for the computational logic elements without any additional doping or applying the mechanical stresses. Thicknesses of silaprismanes are comparable with that of the smallest carbon nanotubes.

References (36)

1.
P. A. S. Autreto, S. B. Legoas, M. Z. S. Flores, D. S. Galvao. J. Chem. Phys. 133, 124513 (2010). DOI: 10.1063/1.3483237
2.
A. Poater, A. G. Saliner, R. Carbó-Dorca, J. Poater, M. Solà, L. Cavallo, A. P. Worth. J. Comput. Chem. 30, 275 (2009). DOI: 10.1002/jcc.21041
3.
A. Poater, A. G. Saliner, L. Cavallo, M. Poch, M. Solà, A. P. Worth. Curr. Med. Chem. 19, 5219 (2012). DOI: 10.2174/092986712803530548
4.
K. Ohno, H. Tokoyama, H. Yamakado. Chem. Phys. Lett. 635, 180 (2015). DOI: 10.1016/j.cplett.2015.06.060
5.
K. P. Katin, S. A. Shostachenko, A. I. Avkhadieva, M. M. Maslov. Adv. Phys. Chem. 2015, 506894 (2015). DOI: 10.1155/2015/506894
6.
E. A. Belenkov, V. A. Greshnyakov. Phys. Solid State. 55(8), 1754 (2013). DOI: 10.1134/S1063783413080039
7.
E. A. Belenkov, V. A. Greshnyakov. New Carbon Materials 28(4), 273 (2013). DOI: 10.1016/S1872-5805(13)60081-5
8.
J. A. Baimova, L. Kh. Rysaeva. J. Struct. Chem. 59(4), 884 (2018). DOI: 10.1134/S0022476618040200
9.
M. I. Tingaev, E. A. Belenkov. J. Phys.: Conf. Ser. 917, 032013 (2017). DOI: 10.1088/1742-6596/917/3/032013
10.
J. A. Baimova, L. Kh. Rysaeva, S. V. Dmitriev, D. S. Lisovenko, V. A. Gorodtsov, D. A. Indeitsev. Mat. Phys. Mech. 33, 1 (2017). DOI: 10.18720/MPM.3312017_1
11.
L. Pavesi, R. Turan. Silicon Nanocrystals: Fundamentals, Synthesis, and Applications. Wiley-VCH Verlag GmbH&Co, Weinheim, Germany (2010).
12.
S. Yang, W. Li, B. Cao, H. Zeng, W. Cai, J. Phys. Chem. C. 115(43), 21056 (2011). DOI: 10.1021/jp2075836
13.
L. Z. Zhao, W. C. Lu, W. S. Su, W. Qin, C. Z. Wang, K. M. Ho, Phys. Chem. Chem. Phys. 17(41), 27734 (2015). DOI: 10.1039/C5CP03856A
14.
Y. Yong, X. Hao, C. Li, X. Li, T. Li, H. Cui, S. Lv. RSC Adv. 5(48), 38680 (2015). DOI: 10.1039/C5RA02081F
15.
B. X. Li, J. H. Liu, S. C. Zhan. Eur. Phys. J. D. 32(1), 59 (2005). DOI: 10.1140/epjd/e2004‑00173‑4
16.
M. B. Ferraro, J. Comput. Methods Sci. Eng. 7, 195 (2007).
17.
D. Yao, G. Zhang, B. Li. Nano Lett. 8(12), 4557 (2008). DOI: 10.1021/nl802807t
18.
Z. Wu, J. B. Neaton, J. C. Grossman. Nano Lett. 9(6), 2418 (2009). DOI: 10.1021/nl9010854
19.
W. Zhigang, J. B. Neaton, J. C. Grossman. Phys. Rev. Lett. 100(24), 246904 (2008). DOI: 10.1103/PhysRevLett.100.246804
20.
Q. Zhang, W. Zhang, W. Wan, Y. Cui, E. Wang. Nano Lett. 10(9), 3243 (2010). DOI: 10.1021/nl904132v
21.
M. C. Wingert, S. Kwon, M. Hu, D. Poulikakos, J. Xiang, R. Chen. Nano Lett. 15(4), 2605 (2015). DOI: 10.1021/acs.nanolett.5b00167
22.
R. Epur, P. J. Hanumantha, M. K. Datta, D. Hong, B. Gattu, P. N. Kumta. J. Mater Chem. A. 3(20), 11117 (2015). DOI: 10.1039/C5TA00961H
23.
H. Matsumoto, K. Higuchi, S. Kyushin, M. Goto, Angew. Chem. Int. Ed. Engl. 31, 1354 (1992). DOI: 10.1002/anie.199213541
24.
A. Sekiguchi, T. Yatabe, C. Kabuto, H. Sakurai. J. Am. Chem. Soc. 115, 5853 (1993). DOI: 10.1021/ja00066a075
25.
C. Lee, W. Yang, R. G. Parr. Phys. Rev. B. 37, 785 (1988). DOI: 10.1103/PhysRevB.37.785
26.
A. D. Becke, J. Chem. Phys. 98, 5648 (1993). DOI: 10.1063/1.464913
27.
R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople. J. Chem. Phys. 72(1), 650 (1980). DOI: 10.1063/1.438955
28.
M. B. Javan. Phys. E. 67, 135 (2015). DOI: 10.1016/j.physe.2014.11.008
29.
D. L. Strout. J. Phys. Chem. A. 110(11), 4089 (2006). DOI: 0.1021/jp0563540
30.
E. A. Belenkov, V. A. Greshnyakov. J. Mater. Sci. 50(23), 7627 (2015). DOI: 10.1007/s10853‑015‑9325‑1
31.
M. M. Maslov, K. P. Katin, Chem. Phys. Lett. 644, 280 (2016). DOI: 10.1016/j.cplett.2015.12.022
32.
R. G. Parr, W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York, USA (1989).
33.
I. S. Ufimtsev, T. J. Martínez. J. Chem. Theory Comput. 5(10), 2619 (2009). DOI: 10.1021/ct9003004
34.
A. V. Titov, I. S. Ufimtsev, N. Luehr, T. J. Martínez. J. Chem. Theory Comput. 9(1), 213 (2013). DOI: 10.1021/ct300321a
35.
J. Kästner, J. M. Carr, T. W. Keal, W. Thiel, A. Wander, P. Sherwood. J. Phys. Chem. A. 113(43), 11856 (2009). DOI: 10.1021/jp9028968
36.
T. P. M. Goumans, C. R. A. Catlow, W. A. Brown, J. Kästner and P. Sherwood. Phys. Chem. Chem. Phys. 11, 5431 (2009). DOI: 10.1039/B816905E