Energy and electronic characteristics of silicon polyprismanes: Density functional theory study

M.A. Gimaldinova, K.P. Katin ORCID logo , M.A. Salem, M.M. Maslov ORCID logo show affiliations and emails
Received: 15 October 2018; Revised: 17 October 2018; Accepted: 18 October 2018
Citation: M.A. Gimaldinova, K.P. Katin, M.A. Salem, M.M. Maslov. Energy and electronic characteristics of silicon polyprismanes: Density functional theory study. Lett. Mater., 2018, 8(4) 454-457
BibTex   https://doi.org/10.22226/2410-3535-2018-4-454-457

Abstract

Longer silaprismanes are more stable, and their HOMO-LUMO gaps are close to zero.We report structural, energy, and some electronic properties of [n,4]-, [n,5]-, and [n,6]silaprismanes (polysilaprismanes): a special type of silicon nanotubes constructed from dehydrogenated molecules of cyclosilanes (silicon rings) Si4-, Si5, and Si6-rings, respectively. For large n, polysilaprismanes can be considered as the analogs of silicon nanotubes with an extremely small cross-section in the form of a regular polygon. Binding energies, interatomic bonds, and the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been calculated using density functional theory for the systems up to ten layers. It is found that [n,4]silaprismane is not thermodynamically stable in the bulk limit (n  ), while the [n,5]- and [n,6]silaprismanes conserve their highly strained framework and become more thermodynamically stable as the number of layers n increase. Moreover, the HOMO-LUMO gap analysis reveals that the [n,5]- and [n,6]silaprismanes with the large effective length can be referred to semimetals or even the conductors. So, they can be successfully used unlike the carbon analogs in nanoelectronics as the functional nanowires or the basis for the computational logic elements without any additional doping or applying the mechanical stresses. Thicknesses of silaprismanes are comparable with that of the smallest carbon nanotubes.

References (36)

1. P. A. S. Autreto, S. B. Legoas, M. Z. S. Flores, D. S. Galvao. J. Chem. Phys. 133, 124513 (2010). Crossref
2. A. Poater, A. G. Saliner, R. Carbó-Dorca, J. Poater, M. Solà, L. Cavallo, A. P. Worth. J. Comput. Chem. 30, 275 (2009). Crossref
3. A. Poater, A. G. Saliner, L. Cavallo, M. Poch, M. Solà, A. P. Worth. Curr. Med. Chem. 19, 5219 (2012). Crossref
4. K. Ohno, H. Tokoyama, H. Yamakado. Chem. Phys. Lett. 635, 180 (2015). Crossref
5. K. P. Katin, S. A. Shostachenko, A. I. Avkhadieva, M. M. Maslov. Adv. Phys. Chem. 2015, 506894 (2015). Crossref
6. E. A. Belenkov, V. A. Greshnyakov. Phys. Solid State. 55(8), 1754 (2013). Crossref
7. E. A. Belenkov, V. A. Greshnyakov. New Carbon Materials 28(4), 273 (2013). Crossref
8. J. A. Baimova, L. Kh. Rysaeva. J. Struct. Chem. 59(4), 884 (2018). Crossref
9. M. I. Tingaev, E. A. Belenkov. J. Phys.: Conf. Ser. 917, 032013 (2017). Crossref
10. J. A. Baimova, L. Kh. Rysaeva, S. V. Dmitriev, D. S. Lisovenko, V. A. Gorodtsov, D. A. Indeitsev. Mat. Phys. Mech. 33, 1 (2017). Crossref
11. L. Pavesi, R. Turan. Silicon Nanocrystals: Fundamentals, Synthesis, and Applications. Wiley-VCH Verlag GmbH&Co, Weinheim, Germany (2010).
12. S. Yang, W. Li, B. Cao, H. Zeng, W. Cai, J. Phys. Chem. C. 115(43), 21056 (2011). Crossref
13. L. Z. Zhao, W. C. Lu, W. S. Su, W. Qin, C. Z. Wang, K. M. Ho, Phys. Chem. Chem. Phys. 17(41), 27734 (2015). Crossref
14. Y. Yong, X. Hao, C. Li, X. Li, T. Li, H. Cui, S. Lv. RSC Adv. 5(48), 38680 (2015). Crossref
15. B. X. Li, J. H. Liu, S. C. Zhan. Eur. Phys. J. D. 32(1), 59 (2005). Crossref
16. M. B. Ferraro, J. Comput. Methods Sci. Eng. 7, 195 (2007).
17. D. Yao, G. Zhang, B. Li. Nano Lett. 8(12), 4557 (2008). Crossref
18. Z. Wu, J. B. Neaton, J. C. Grossman. Nano Lett. 9(6), 2418 (2009). Crossref
19. W. Zhigang, J. B. Neaton, J. C. Grossman. Phys. Rev. Lett. 100(24), 246904 (2008). Crossref
20. Q. Zhang, W. Zhang, W. Wan, Y. Cui, E. Wang. Nano Lett. 10(9), 3243 (2010). Crossref
21. M. C. Wingert, S. Kwon, M. Hu, D. Poulikakos, J. Xiang, R. Chen. Nano Lett. 15(4), 2605 (2015). Crossref
22. R. Epur, P. J. Hanumantha, M. K. Datta, D. Hong, B. Gattu, P. N. Kumta. J. Mater Chem. A. 3(20), 11117 (2015). Crossref
23. H. Matsumoto, K. Higuchi, S. Kyushin, M. Goto, Angew. Chem. Int. Ed. Engl. 31, 1354 (1992). Crossref
24. A. Sekiguchi, T. Yatabe, C. Kabuto, H. Sakurai. J. Am. Chem. Soc. 115, 5853 (1993). Crossref
25. C. Lee, W. Yang, R. G. Parr. Phys. Rev. B. 37, 785 (1988). Crossref
26. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). Crossref
27. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople. J. Chem. Phys. 72(1), 650 (1980). Crossref
28. M. B. Javan. Phys. E. 67, 135 (2015). Crossref
29. D. L. Strout. J. Phys. Chem. A. 110(11), 4089 (2006). DOI: 0.1021/jp0563540.
30. E. A. Belenkov, V. A. Greshnyakov. J. Mater. Sci. 50(23), 7627 (2015). Crossref
31. M. M. Maslov, K. P. Katin, Chem. Phys. Lett. 644, 280 (2016). Crossref
32. R. G. Parr, W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York, USA (1989).
33. I. S. Ufimtsev, T. J. Martínez. J. Chem. Theory Comput. 5(10), 2619 (2009). Crossref
34. A. V. Titov, I. S. Ufimtsev, N. Luehr, T. J. Martínez. J. Chem. Theory Comput. 9(1), 213 (2013). Crossref
35. J. Kästner, J. M. Carr, T. W. Keal, W. Thiel, A. Wander, P. Sherwood. J. Phys. Chem. A. 113(43), 11856 (2009). Crossref
36. T. P. M. Goumans, C. R. A. Catlow, W. A. Brown, J. Kästner and P. Sherwood. Phys. Chem. Chem. Phys. 11, 5431 (2009). Crossref