On the charge of quodons

J.F.R. Archilla1, F.M. Russell2
1Group of Nonlinear Physics, Universidad de Sevilla, ETSI Informática, Avda Reina Mercedes s/n, 41012-Sevilla, Spain
2Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
Abstract
Muscovite mica is a mineral in which the tracks of charged swift particles, from radioactivity or cosmic rays, can be recorded and made visible by decoration with the mineral magnetite. Also, the tracks of quasi-one-dimensional lattice excitations, called quodons, moving along close-packed directions can be recorded. Most quodon tracks evolve from nuclear recoils following decay of the radioactive isotope 40K in mica. The recording process is charge sensitive: moving positive charge precipitates black magnetite and moving negative charge leads to clear epidote. Computer modeling of lattice excitations suggest that breathers or solitons can trap a charge. Most of the decays of 40K leave behind a charge, about 90% of them positive. So the evolution of most quodons from nuclear recoil events occurs in the presence of a charge. The possible energies and mechanisms of charge transmission in the lattice are analyzed. The outcome of 40K decay can be Ca++, Ar0, Ar+ and Ar++. These ions not only have different recoil energy and charge, but also different electron levels and ionization potentials. The first collision of the primary recoiling ion can be inelastic with the transfer of charge to the secondary ion K+. We analyze the possible results taking into account charge, energy and momentum conservation and considering the possible ionization states of the K atoms, which can be intrinsic localized modes, solitons, kinks or crowdions, travelling charge states and combinations of them.
Accepted: 25 January 2016
Views: 134   Downloads: 34
References
1.
C. D. Anderson. Phys. Rev. 43 (6), 491 (1933).
2.
F. M. Russell. Phys. Lett. 25B, 298 (1967).
3.
F. M. Russell. Nature 216, 907 (1967).
4.
Russel1967c. Nucl. Tracks. Rad. Meas. 15, 41 (1988).
5.
F. M. Russell. In Quodons in Mica, J. F. R. Archilla et al, eds., Springer (2015) pp. 3 – 33.
6.
F. M. Russell. In Quodons in Mica, J. F. R. Archilla et al, eds., Springer (2015) pp. 474 – 559.
7.
F. M. Russell, D. R. Collins. Rad. Meas. 25, 67 (1995).
8.
F. M. Russell, J. C. Eilbeck. Europhys. Lett. 78, 10004 (2007).
9.
J. F. R. Archilla, Y. A. Kosevich, N. Jiménez, V. J. Sánchez-Morcillo, L. M. García-Raffi, In Quodons in Mica, J. F. R. Archilla et al, eds., Springer (2015) p. 69 – 96.
10.
F. M. Russell. ArXiv: 1505.03185 (2015).
11.
X. Mougeot, R. G. Helmer. LNE-LNHB / CEA — Table de Radionucléides, K-40 tables. http://www.nucleide.org (2012).
12.
J. Pradler, B. Singh, I. Yavin. Phys. Lett. B 720, 399 (2013).
13.
Lide, D. R. (ed.): Handbook of Chemistry and Physics, 90th edn. CRC Press, Boca Raton, Florida, USA (2010). Sec. 10, p. 203.
14.
J. Bajars, J. C. Eilbeck, B. Leimkuhler:, Physica D 301, 8 (2015).
15.
J. Bajars, J. C. Eilbeck, B. Leimkuhler: In J. F. R. Archilla et al (eds.) Quodons in mica, pp 35 – 67. Springer (2015) p35–67.
16.
J. F. R Archilla, Y. A., Kosevich, N. Jiménez, V. J. Sánchez-Morcillo, L. M. García-Raffi,. Phys. Rev. E 91, 022,912 (2015).
17.
J. Cuevas, J., C. Katerji., J. F. R. Archilla, J. C. Eilbeck, F. M. Russell. Phys. Lett. A, 315, 364 (2003).
18.
J. Cuevas, J. F. R. Archilla, B. Sánchez-Rey, F. R. Romero. Physica D 216, 115 (2006).
19.
Y. Zolotaryuk, J. C. Eilbeck. J. Phys.‑Condens. Mat. 10, 4553 (1998).
20.
L. Cruzeiro-Hansson, J. C. Eilbeck, J. L. Marin, F. M. Russell, Physica D 142, 101 (2000).
21.
D. Hennig, A. Chetverikov, M. G. Velarde, W. Ebeling. Phys. Rev. E 76, 046602 (2007).
22.
A. P. Chetverikov, W. Ebeling, M. G. Velarde. Eur. Phys. J.‑Spec. Top. 222, 2531 (2013).
23.
A. P. Chetverikov, W. Ebeling, and M. G. Velarde. In J. F. R. Archilla et al (eds.) Quodons in mica. Springer (2015) pp. 321 – 339.