Collisions of quasi-one-dimensional solitons in triangular Morse lattice

A.P. Chetverikov1, W. Ebeling2, M.G. Velarde3
1Department of Physics, Saratov National Research State University, Astrakhanskaya 83, 410012 Saratov, Russia
2Institut fur Physik, Humboldt Universitat Berlin, Newtonstrasse 15, 12489 Berlin, Germany
3Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII, 1, 28040 Madrid, Spain
Abstract
We study by means of numerical simulation collisions of quasi-one-dimensional solitonic excitations in a 2D lattice of particles interacting via Morse potential forces. Local mobile excitations arise as a result of strong kicks for one or some selected particles stimulating motion of compression of density along crystallographic axes. It is shown that both two colliding head-on excitations and two excitations moving in parallel rods behave as real solitons and do not deform after contact with each other. Excitations moving in non-parallel axes collapse while meeting each other in the same point. But only one of them is destroyed if it crosses a trajectory of other local excitation just after passing of the latter because of temporal local deformation of a lattice behind a solitonic excitation. This effect provides possibility of control of motion of solitons and may be used for control of soliton assisted transport of charged particles. We study by means of numerical simulation collisions of quasi-one-dimensional solitonic excitations in a 2D lattice of particles interacting via Morse potential forces. Local mobile excitations arise as a result of strong kicks for one or some selected particles stimulating motion of compression of density along crystallographic axes. It is shown that both two colliding head-on excitations and two excitations moving in parallel rods behave as real solitons and do not deform after contact with each other. Excitations moving in non-parallel axes collapse while meeting each other in the same point.
Accepted: 22 March 2016
Views: 51   Downloads: 21
References
1.
M. G. Velarde, W. Ebeling, A. P. Chetverikov. Int. J. Bifurc.&Chaos. 15, 245 (2005)
2.
V. A. Makarov, M. G. Velarde, A. Chetverikov, W. Ebeling. Phys. Rev E. 73, 066626 (2006)
3.
D. Hennig, A. Chetverikov, M. G. Velarde, W. Ebeling. Phys. Rev. E. 76, 046602 (2007)
4.
M. G. Velarde, W. Ebeling, A. P. Chetverikov, D. Hennig. Int. J. Bifurc.&Chaos. 18, 521 (2008)
5.
D. Hennig, M. G. Velarde, W. Ebeling, A. Chetverikov. Phys. Rev. E. 78, 066606 (2008)
6.
W. Ebeling, M. G. Velarde, A. P. Chetverikov. Condensed Matter Phys. 12, 633 (2009)
7.
M. G. Velarde, A. P. Chetverikov, W. Ebeling, D. Hennig, J. J. Kozak. Int. J. Bifurc.&Chaos. 20,185 (2010)
8.
L. Brizhik, A. P. Chetverikov, W. Ebeling, G. Ropke & M. G. Velarde. Phys. Rev. B. 85, 245105 (2012)
9.
M. G. Velarde, A. P. Chetverikov, W. Ebeling, E. G. Wilson, K. J. Donovan. EPL. 106, 27004 (2014)
10.
T. Yu. Astakhova, G. A. Vinogradov. J. Phys. A: Math. Gen. 39, 3593 (2006)
11.
A. P. Chetverikov, W. Ebeling, M. G. Velarde. Eur. Phys. J. ST 222, 2531 (2013)
12.
A. P. Chetverikov, W. Ebeling, M. G. Velarde. In.: Quodons in mica: nonlinear localized travelling excitations in crystals, ed. J. F. R. Archilla, N. Jiménez, V. J. Sánchez-Morcillo, L. M. García-Raffi, Springer Series in Materials Science. 221, 321. Springer, Berlin (2015)
13.
A. P. Chetverikov, W. Ebeling, M. G. Velarde. Eur. Phys. J. B. 80, 137 (2011)
14.
A. P. Chetverikov, W. Ebeling, M. G. Velarde. Physica D. 240, 1954 (2011)
15.
A. P. Chetverikov, W. Ebeling, M. G. Velarde. Wave Motion. 48, 753 (2011)
16.
W. Ebeling, A. A. Valuev, V. Podlipchuk J. Molecular Liquids. 73 / 74, 445 (1997)
17.
W. Ebeling, U. Erdmann, J. Dunkel, M. Jenssen, J. Stat. Phys. 101, 443 (2000)
18.
W. Ebeling, I. Sokolov. Statistical thermodynamics and stochastic theory of nonequilibrium systems. Singapore, World Scientific. (2005)
19.
A. A. Kistanov, S. V. Dmitriev, A. P. Chetverikov, M. G. Velarde. Eur. Phys. J. B. 87, 211 (2014)