Evolution of the structure and physical-mechanical properties of metastable steel after surface frictional treatment with varying loading on the indenter

E.A. Putilova ORCID logo , L.S. Goruleva ORCID logo , S.M. Zadvorkin, P.A. Skorynina, R.A. Savrai ORCID logo , K.D. Krucheva показать трудоустройства и электронную почту
Получена 15 февраля 2023; Принята 03 апреля 2023;
Эта работа написана на английском языке
Цитирование: E.A. Putilova, L.S. Goruleva, S.M. Zadvorkin, P.A. Skorynina, R.A. Savrai, K.D. Krucheva. Evolution of the structure and physical-mechanical properties of metastable steel after surface frictional treatment with varying loading on the indenter. Письма о материалах. 2023. Т.13. №3. С.191-196
BibTex   https://doi.org/10.22226/2410-3535-2023-3-191-196

Аннотация

The structure and properties of AISI 321 steel depends on the level of normal load on the indenter during frictional treatment. Friction treatment with a sliding indenter leads to the formation of a gradient structure with a depth of up to 500 µm.The study covered changes in the microstructure and physical-mechanical properties of AISI 321 corrosion-resistant steel after frictional treatment of the surface by a sliding semi-spherical indenter with varying loads on the indenter. The maximum load was found, for which the amount of the formed strain-induced martensite was the highest and did not change. It was shown that such frictional treatment formed a gradient structure whose maximum depth of the modified layer at the maximum indenter load of 400 N was about 450 µm. Hardness, amounts of strain-induced martensite, and magnetic parameters depending on the normal indenter loading after frictional treatment were well aligned with each other.

Ссылки (34)

1. K. H. Lo, C. H. Shek, J. Lai. Mat. Sci. and Eng. R. 4 - 6, 65 (2009). Crossref
2. B. N. Arzamasov, I. I. Sidorin, G. F. Kosolapov, V. I. Makarova, G. G. Muhin, N. M. Ryzhov, V. I. Silaeva, N. V. Ul’yanova. Materials science. Textbook for higher technical educational institutions. Moscow, Mashinostroenie Publ. (1986) 384 p. (in Russian) [Б. Н. Арзамасов, И. И. Сидорин, Г. Ф. Косолапов, В. И. Макарова, Г. Г. Мухин, Н. М. Рыжов, В. И. Силаева, Н. В. Ульянова. Материаловедение: учебник для высших технических учебных заведений. Москва, Машиностроение (1986) 384 с.].
3. A. P. Gulyaev. Metal science. Textbook for higher education institutions. 6th ed. Moscow, Metallurgiya Publ. (1986) 544 p. (in Russian) [А. П. Гуляев. Металловедение. Учебник для вузов. Москва, Металлургия (1986) 544 с.].
4. Y. Wu, B. Guelorget, Z. Sun, R. Déturche, D. Retraint. Mater. Charact. 155, 109788 (2019). Crossref
5. A. V. Makarov, R. A. Savrai, N. A. Pozdejeva, S. V. Smirnov, D. I. Vichuzhanin, L. G. Korshunov. Surf. Coat. Technol. 3, 205 (2010). Crossref
6. N. V. Lezhnin, A. V. Makarov, S. N. Luchko. Lett. Mater. 9 (3), 310 (2019). (in Russian) [Н.В. Лежнин, А.В. Макаров, С.Н. Лучко. Письма о материалах. 9 (3), 310 (2019).]. Crossref
7. G. Kermouche, G. Pacquaut, C. Langlade, J.-M. Bergheau. Comptes Rendus Mécanique. 339, 552 (2011). Crossref
8. K. Lu, J. Lu. Mater. Sci. Eng. A. 375 - 377, 38 (2004). Crossref
9. M. Ulutan, O. N. Celik, H. Gasan, U. Er. J. Mater. Sci. Technol. 3, 26 (2010). Crossref
10. X. Chen, M. Gussev, M. Balonis, M. Bauchy, G. Sant. Mater. Des. 203, 109614 (2021). Crossref
11. A. V. Makarov. Promising materials. Part 3: Nanostructural Friction Machining of Carbon and Low-Alloy Steels. Moscow, Institute of Steel and Alloys (2011) 435 p. (in Russian) [А. В. Макаров. Перспективные материалы. Глава 3: Наноструктурирующая фрикционная обработка углеродистых и низколегированных сталей. Москва, МИСиС (2011) 435 с.].
12. R. A. Savrai, A. L. Osintseva. Mater. Sci. Eng. A. 802, 140679 (2021). Crossref
13. M. Jamalian, D. Field. J. Mater. Sci. Technol. 36, 45 (2020). Crossref
14. R. A. Savrai, Y. M. Kolobylin, E. G. Volkova. The Ph. of Met. and Metallogr. 122, 800 (2021). Crossref
15. R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, A. L. Osintseva. Electronic scientific journal “Diagnostics, Resource and Mechanics of materials and structures”. 5, 43 (2017). Crossref
16. A. A. Rusakov. Radiography of metals. Moscow, Atomizdat Publ. (1977) 480 p. (in Russian) [А. А. Русаков. Рентгенография металлов. Москва, Атомиздат (1977) 480 с.].
17. A. L. Dorofeev. Eddy currents. Moscow, Energiya Publ. (1977) 72 p. (in Russian) [А. Л. Дорофеев. Вихревые токи. Москва, издательство Энергия (1977) 72 с.].
18. P. F. Wang, Z. Han, J. Mater. Sci. Technol. 10, 34 (2018). Crossref
19. A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, A. L. Osintseva. Phys. of metals and metallogr. 12, 118 (2017). Crossref
20. R. A. Savrai, A. V. Makarov, I. Y. Malygina, E. G. Volkova. Mater. Sci. Eng. A. 734, 506 (2018). Crossref
21. J. G. Li, M. Umemoto, Y. Todaka, K. Tsuchiya. J. Alloys Compd. 434 - 435, 290 (2007). Crossref
22. A. J. Schwartz, M. Kumar, B. L. Adams, D. P. Field. Electron Backscatter Diffraction in Materials Science. Springer (2009) 403 p. Crossref
23. Y. Samih, B. Beausir, B. Bolle, T. Grosdidier. Mater. Charact. 83, 129 (2013). Crossref
24. I. Heilmann, W. A. Clark, D. A. Rigney. Acta Metall. 8, 31 (1983). Crossref
25. V. A. Lihachev, V. E. Panin, E. E. Zasimchuk, Cooperative deformation processes and deformation localization. Kiev, Naukova dumka (1989) 320 p. (in Russian) [В. А. Лихачев, В. Е. Панин, Е. Е. Засимчук. Кооперативные деформационные процессы и локализация деформации. Киев, Наукова думка (1989) 320 с.].
26. V. E. Panin, P. A. Vityaz. Physical mesomechanics. 1, 5 (2002). (in Russian) [В. Е. Панин, П. А. Витязь. Физическая мезомеханика. 1, 5 (2002).].
27. J. Moering, X. Ma, G. Chen, P. Miao, G. Li, G. Qian, S. Mathaudhu, Y. Zhu. Scripta Mater. 108, 100 (2015). Crossref
28. L. G. Korshunov, V. A. Shabashov, N. L. Chernenko, V. P. Pilyugin. Phys. of metals and metallogr. 106, 616 (2008). Crossref
29. T. Oršulová, P. Palček, M. Roszak, M. Uhríčik, M. Smetana, J. Kúdelčík. Procedia structural Integrity. 13, 1689 (2018). Crossref
30. E. S. Gorkunov, S. M. Zadvorkin, E. A. Putilova, A. M. Povolotskaya, L. S. Goruleva, I. A. Veretennikova, I. S. Kamantsev. Russ. J. Nondestr. Test. 6, 48 (2012). Crossref
31. E. S. Gorkunov, E. A. Putilova, S. M. Zadvorkin, A. V. Makarov, N. L. Pecherkina, G. Y. Kalinin, S. Y. Mushnikova, O. V. Fomina. Phys. of metals and metallogr. 8, 116 (2015). Crossref
32. E. S. Gorkunov, S. M. Zadvorkin, E. A. Tueva, L. S. Goruleva, A. V. Podkorytova. Deformation and destruction of materials. 10, 34 (2011). (in Russian) [Э. С. Горкунов, С. М. Задворкин, Е. А. Туева, Л. С. Горулева, А. В. Подкорытова. Деформация и разрушение материалов. 10, 34 (2011).].
33. E. S. Gorkunov, S. M. Zadvorkin, S. Yu. Mitropolskaya, D. I. Vichuzhanin, K. E. Solov’ev. Change in magnetic properties of metastable austenitic steel due to elastoplastic deformation. Met. Sci. Heat Treat. 51, 423 (2009).
34. M. A. Filippov, V. S. Litvinov, Yu. R. Nemirovsky. Steels with metastable austenite. Moskow, Metallurgy (1988) 255 p. (in Russian) [М. А. Филиппов, В. С. Литвинов, Ю. Р. Немировский. Стали с метастабильным аустенитом. Москва, Металлургия (1988) 255 с.].

Другие статьи на эту тему

Финансирование на английском языке

1. This study was performed within the state order - no. AAAA-A18‑118020790148‑1