Characteristics of the stress-strain state and structural changes in axisymmetric samples under sign-alternating deformation by free and constrained bending

G.I. Raab, D.A. Aksenov ORCID logo , R.N. Asfandiyarov ORCID logo , A.G. Raab, I.S. Kodirov, M. Janeček показать трудоустройства и электронную почту
Получена: 30 сентября 2019; Исправлена: 09 ноября 2019; Принята: 10 ноября 2019
Эта работа написана на английском языке
Цитирование: G.I. Raab, D.A. Aksenov, R.N. Asfandiyarov, A.G. Raab, I.S. Kodirov, M. Janeček. Characteristics of the stress-strain state and structural changes in axisymmetric samples under sign-alternating deformation by free and constrained bending. Письма о материалах. 2019. Т.9. №4. С.494-498
BibTex   https://doi.org/10.22226/2410-3535-2019-4-494-498

Аннотация

The proposed and studied method of continuous alternating deformation by bending of workpieces around a rotating roller, aimed at hardening long axisymmetric workpieces with a slight change in their cross-section.The paper presents the results of computer modeling and experimental studies of the parameters of the stress-strain state and structure of the material during deformation by the method of alternating multi-cycle bending of a long-length workpiece (bar, wire rod) around a rotating roller in free and constrained conditions. The material for the study was long-length rods of low alloyed bronze for electrical applications — the Cu-0.5 %Cr alloy. It was found that after 4 bending cycles with the workpiece turning through 90° around the longitudinal axis, a gradient field of accumulated strain with maximum values in the peripheral region and minimum in the central region of the workpiece is formed in the workpiece before each subsequent processing cycle. Accordingly, the structural state also has a gradient distribution over the grain size. Constrained bending conditions provide a more uniform deformation field and lower average stresses in the deformation zone, which in turn leads to a smaller structural gradient in the cross section of the sample. After 4 cycles of free bending, a grain-subgrain structure with a minimum grain size of 7.0 ± 0.5 μm is formed in the surface layers of the workpiece, while in the central region, the grain size is 45 ± 5 μm.

Ссылки (25)

1. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk Nanostructured Materials: Fundamentals and Applications. John Wiley & Sons, USA (2014) 456 p. Crossref
2. F. Z. Utyashev, G. I. Raab. Deformation Methods for the Fabrication and Processing of Ultrafine-Grained and Nanostructured Materials. Ufa, Gilem (2013) 376 p. (in Russian). [Ф. З. Утяшев, Г. И. Рааб. Деформационные методы получения и обработки ультрамелкозернистых и наноструктурных материалов. Уфа, Гилем (2013) 376 с.].
3. V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, V. I. Kopylov. Fundamentals and Engineering of Severe Plastic Deformation. New York, Nova Science Publishers (2010) 542 p.
4. G. J. Raab, R. Z. Valiev, T. C. Lowe, Y. T. Zhu. Materials Science and Engineering: A. 382 (1 - 2), 30 (2004). Crossref
5. A. V. Polyakov, I. P. Semenova, G. I. Raab, V. D. Sitdikov, R. Z. Valiev. Rev. Adv. Mater. Sci. 31 (1), 78 (2012).
6. C. Xu, S. Schroeder, P. B. Berbon, T. G. Langdon. Acta Materialia. 58 (4), 1379 (2010). Crossref
7. V. Ayati, M.H. Parsa, H. Mirzadeh. Advanced Engineering Materials. 18 (2), 319 (2016). Crossref
8. J. Y. Huang, Y. T. Zhu, D. J. Alexander, X. Liao, T. C. Lowe, R. J. Asaro. Materials Science and Engineering A. 371, 35 (2004). Crossref
9. J.Y. Huang, Y.T.Zhu, H. Jiang, T.C. Lowe. Acta Mater. 49, 1497 (2001). Crossref
10. Y. Zhu, H. Jiang, J. Huang, T. Lowe. Metall Mater Trans A. 32, 1559 (2001). Crossref
11. D. H. Shin, J. J. Park, Y. S. Kim, K. T. Park. Materials Science and Engineering A. 328 (1 - 2), 98 (2002). Crossref
12. A. Shirdel, A. Khajeh, M. M. Moshksar. Materials and Design. 31 (2), 946 (2010). Crossref
13. A. Krishnaiah, C. Uday, P. Venugopal. Scripta Materialia. 52(12), 1229 (2005). Crossref
14. J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec. Journal of Achievements in Materials and Manufacturing Engineering. 33 (2), 166 (2009).
15. J. P. Stobrawa, Z. M. Rdzawski, W. Głuchowski, W. Malec. Journal of Achievements in Materials and Manufacturing Engineering. 28 (2), 195 (2010).
16. W. Głuchowski, J. P. Stobrawa, Z. M. Rdzawski. Achieves of Material Science and Engineering. 47 (2), 103 (2011).
17. J. P. Stobrawa, Z. M. Rdzawski, W. Głuchowski, W. Malec. Journal of Achievements in Materials and Manufacturing Engineering. 56 (1), 171 (2011).
18. A. Mirsepasi, M. N. Ahmadabadi, M. H. Parsa, H. G. Nanesa, A. F. Dizaji. Materials Science and Engineering A. 551, 32 (2012). Crossref
19. Sh. Hashemipour, A. R. Eivani, H. R. Jafarian, M. Naseri, N. Park. Mater. Res. Express. 5, 126519 (2018). Crossref
20. Yu. F. Ivanov, V. V. Kovalenko, M. P. Ivakhin, et al. Fizicheskaya Mezomekhanika. 7 (3), 29 (2004). (in Russian) [Ю. Ф. Иванов, В. В. Коваленко, М. П. Ивахин и др. Физическая мезомеханика. 7 (3), 29 (2004).].
21. K. Lu. Science. 345 (6203), 1455 (2014). Crossref
22. M. V. Storozhev. Teoriya obrabotki metallov davleniyem: uchebnik dlya vuzov (Ed.by M. V. Storozhev, E. A. Popov). 4th ed., Revised. and add. Moscow, Mashinostroyeniye, (1977) 423 p. (in Russian) [М. В. Сторожев, Теория обработки металлов давлением: учебник для вузов (Под ред. М. В. Сторожев, Е. А. Попов). 4-е изд., перераб. и доп. Москва, Машиностроение (1977) 423 с.].
23. V. V. Rybin, N. Yu. Zolotorevsky, E. A. Ushanova. Journal of Technical Physics. 84 (12), 81 (2014). (in Russian) [В. В. Рыбин, Н. Ю. Золоторевский, Э. А. Ушанова. Журнал технической физики. 84 (12), 81 (2014).].
24. R. Honikom. Plasticheskaya deformatsiya metallov. Moscow, Mir (1972) 408 p. (in Russian) [Р. Хоником. Пластическая деформация металлов. Москва, Мир (1972) 408 с.].
25. V.V. Rybin. Bol'shiye plasticheskiye deformatsii i razrusheniye metallov. Moscow, Metallurgy (1986) 224 p. (in Russian) [В.В. Рыбин. Большие пластические деформации и разрушение металлов. Москва, Металлургия (1986) 224 с.].

Другие статьи на эту тему

Финансирование

1. Ministry of Science and Higher Education of the Russian Federation - No. 14.586.21.0059 (UIN: RFMEFI58618X0059)
2. Czech Ministry of Education, Youth and Sports - under the project LTARF18010