Consolidation of magnesium and magnesium-quasicrystal composites through high‑pressure torsion

M.M. Castro ORCID logo , W. Wolf, A. Isaac, M. Kawasaki, R.B. Figueiredo показать трудоустройства и электронную почту
Получена: 07 октября 2019; Исправлена: 09 октября 2019; Принята: 09 октября 2019
Эта работа написана на английском языке
Цитирование: M.M. Castro, W. Wolf, A. Isaac, M. Kawasaki, R.B. Figueiredo. Consolidation of magnesium and magnesium-quasicrystal composites through high‑pressure torsion. Письма о материалах. 2019. Т.9. №4s. С.546-550
BibTex   https://doi.org/10.22226/2410-3535-2019-4-546-550

Аннотация

Magnesium / quasicrystal composites are produced by high-pressure torsion and tested in tension. The ductility is limited due to areas with lack of bonding.It is of great interest to produce magnesium-based composites through room temperature consolidation of particles using high-pressure torsion. However, the lack of bonding between the particles compromises the integrity and ductility of such materials. The present work evaluates the microstructure of the composites involving pure magnesium and a magnesium alloy AZ91 with the incorporation of quasicrystal particles as a reinforcement phase. Thus, an Al-Cu-Fe icosahedral quasicrystalline alloy was produced by gas atomization and mixed with magnesium particles in a proportion of 80 % in weight of metal and 20 % of quasicrystal. The mix was processed by different number of turns of high-pressure torsion. The microstructure was observed using scanning electron microscopy and the mechanical behavior was evaluated using tensile testing. Generalized lack of bonding is observed in the AZ91 alloy matrix composite and localized lack of bonding in the pure magnesium matrix. High tensile strength has been achieved after consolidation of pure magnesium with and without quasicrystal reinforcement but all samples display limited ductility. The elongations are less than 5 % in all conditions. This is attributed to pre-existing areas with lack of bonding in the matrix, cracking of the hard particles and lack of bonding between the matrix and the reinforcement particles.

Ссылки (27)

1. H. Asgharzadeh, S.-H. Joo, J.-K. Lee, H. S. Kim. Journal of Materials Science. 50, 3164 (2015). Crossref
2. M. Ashida, Z. Horita, T. Kita, A. Kato. Materials Transactions. 53, 13 (2012). Crossref
3. W. Xu, X. Wu, T. Honma, S. P. Ringer, K. Xia. Acta Materialia. 57, 4321 (2009). Crossref
4. A. P. Zhilyaev, A. A. Gimazov, G. I. Raab, T. G. Langdon. Materials Science and Engineering: A. 486, 123 (2008). Crossref
5. W. J. Botta, J. B. Fogagnolo, C. A. D. Rodrigues, C. S. Kiminami, C. Bolfarini, A. R. Yavari. Materials Science and Engineering: A. 375 - 377, 936 (2004). Crossref
6. Z. Lee, F. Zhou, R. Z. Valiev, E. J. Lavernia, S. R. Nutt. Scripta Materialia. 51, 209 (2004). Crossref
7. I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev, R. Z. Valiev. Nanostructured Materials. 10, 45 (1998). Crossref
8. I. V. Alexandrov, R. K. Islamgaliev, R. Z. Valiev, Y. T. Zhu, T. C. Lowe. Metallurgical and Materials Transactions A. 29, 2253 (1998). Crossref
9. R. B. Figueiredo, T. G. Langdon. Advanced Engineering Materials. 21, 1801039 (2019). Crossref
10. A. P. Zhilyaev, T. G. Langdon. Progress in Materials Science. 53, 893 (2008). Crossref
11. M. M. Castro, P. H. R. Pereira, A. Isaac, R. B. Figueiredo, T. G. Langdon. Journal of Alloys and Compounds. 780, 422 (2019). Crossref
12. M. M. Castro, S. Sabbaghianrad, P. H. R. Pereira, E. M. Mazzer, A. Isaac, T. G. Langdon, R. B. Figueiredo. Journal of Alloys and Compounds. 804, 421 (2019). Crossref
13. M. M. Castro, D. R. Lopes, R. B. Soares, D. M. M. dos Santos, E. H. M. Nunes, V. F. C. Lins, P. H. R. Pereira, A. Isaac, T. G. Langdon, R. B. Figueiredo. Materials. 12, 2609 (2019). Crossref
14. R. B. Figueiredo, S. Sabbaghianrad, A. Giwa, J. R. Greer, T. G. Langdon. Acta Materialia. 122, 322 (2017). Crossref
15. E. Y. Yoon, D. J. Lee, T. S. Kim, H. J. Chae, P. Jenei, J. Gubicza, T. Ungar, M. Janecek, J. Vratna, S. Lee, H. S. Kim. Journal of Materials Science. 47, 7117 (2012). Crossref
16. M. M. de Castro, A. P. Carvalho, P. H. R. Pereira, A. C. Isaac Neta, R. B. Figueiredo, T. G. Langdon. Materials Science Forum. 941, 851 (2019). Crossref
17. J.-M. Dubois. Materials Science and Engineering: A. 294 - 296, 4 (2000). Crossref
18. B. A. Silva Guedes de Lima, R. Medeiros Gomes, S. J. Guedes de Lima, D. Dragoe, M.-G. Barthes-Labrousse, R. Kouitat-Njiwa, J.-M. Dubois. Science and Technology of Advanced Materials. 17, 71 (2016). Crossref
19. J.-M. Dubois. Chemical Society Reviews. 41, 6760 (2012). Crossref
20. M. Galano, F. Audebert, I. C. Stone, B. Cantor. Acta Materialia. 57, 5107 (2009). Crossref
21. W. Wolf, C. Bolfarini, C. S. Kiminami, W. J. Botta. Scripta Materialia. 173, 21 (2019). Crossref
22. W. Wolf, L. C. R. Aliaga, D. N. Travessa, C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, W. J. Botta. Materials Research. 19, 74 (2016). Crossref
23. R. B. Figueiredo, S. Sabbaghianrad, T. G. Langdon. IOP Conference Series: Materials Science and Engineering. 194, 012039 (2017). Crossref
24. R. B. Figueiredo, P. H. R. Pereira, T. G. Langdon. Advanced Engineering Materials. 0, 1900565 (2019). Crossref
25. R. B. Figueiredo, M. Kawasaki, T. G. Langdon. Acta Physica Polonica A. 122, 425 (2012). Crossref
26. R. B. Figueiredo, M. T. P. Aguilar, P. R. Cetlin, T. G. Langdon. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 42, 3013 (2011). Crossref
27. R. B. Figueiredo, T. G. Langdon. Materials Science and Engineering A. 528, 4500 (2011). Crossref

Другие статьи на эту тему

Финансирование