Nanocomposite thin-film structures based on a polyelectrolyte complex of chitosan and chitosan succinamide with SWCNT

R.B. Salikhov, R.A. Zilberg ORCID logo , E.O. Bulysheva, A.D. Ostaltsova, T.R. Salikhov, Y.B. Teres показать трудоустройства и электронную почту
Получена 21 декабря 2022; Принята 11 апреля 2023;
Эта работа написана на английском языке
Цитирование: R.B. Salikhov, R.A. Zilberg, E.O. Bulysheva, A.D. Ostaltsova, T.R. Salikhov, Y.B. Teres. Nanocomposite thin-film structures based on a polyelectrolyte complex of chitosan and chitosan succinamide with SWCNT. Письма о материалах. 2023. Т.13. №2. С.132-137
BibTex   https://doi.org/10.22226/2410-3535-2023-2-132-137

Аннотация

Циклические вольтамперограммы, диаграммы Найквиста и СЭМ изображения микроструктур образцов пленокThe article is devoted to the study of nanocomposite thin films based on a polyelectrolyte complex of chitosan and chitosan succinamide (PEC). Single-walled carbon nanotubes (SWCNT) were used as fillers. Using the methods of cyclic voltammetry and electrochemical impedance spectroscopy, it was found that nanocomposite films have a larger effective surface area and electron transfer rate compared to polyelectrolyte complex films, which allows them to be further used in the electroanalysis of substances of various nature. The study of the surface of the nanocomposite structure of PEC with SWCNT using SEM showed that there are formations in the form of filaments formed by carbon nanotubes on it. Studying the nature of morphology is extremely important when creating sensory devices. Sensory sensitivity of resistive thin-film nanocomposite structures to air humidity and ammonia vapors was found. Based on these nanocomposite materials, samples of resistive thin-film structures were prepared, the dependences of the flowing current on the relative humidity of the air and the concentration of ammonia vapors were measured.

Ссылки (42)

1. V. Vychuzhanin. Modern electronics. 5, 8 (2008). (in Russian) [В. Вычужанин. Современная электроника. 5, 8 (2008).].
2. M. K. Sokolskaya, A. S. Kolosova, I. A. Vitkalova, A. S. Orlova, E. S. Pikalov. Fundamental research. 10 (2), 290 (2017). (in Russian) [М. К. Сокольская, А. С. Колосова, И. А. Виткалова, А. С. Торлова, Е. С. Пикалов. Фундаментальные исследования. 10 (2), 290 (2017).].
3. J. Wang, N. Wang, D. Xu, L. Tang, B. Sheng. Sensors and Actuators B: Chemical. 375, 132846 (2023). Crossref
4. I. D. Kosobudsky, K. V. Zapsis, N. M. Ushakov, V. Ya. Podvigalkin. Bulletin of the Saratov State Technical University. 1, 109 (2003). (in Russian) [И. Д. Кособудский, К. В. Запсис, Н. М. Ушаков, В. Я. Подвигалкин. Вестник Саратовского государственного технического университета. 1, 109 (2003).].
5. Y. Xu, Z. Yan. Encyclopedia of Nanomaterials. 1, 306 (2023). Crossref
6. S. Gasso, A. Mahajan. Materials Science in Semiconductor Processing. 152, 107048 (2022). Crossref
7. R. B. Salikhov, R. A. Zilberg, I. N. Mullagaliev, T. R. Salikhov, Y. B. Teres. Mendeleev Communications, 32 (4), 520 (2022). Crossref
8. V. F. Markov, T. V. Vinogradova, I. V. Zarubin, L. N. Maskayeva. Analytics and control. 16 (4), 410 (2012). (in Russian) [В. Ф. Марков, Т. В. Виноградова, И. В. Зарубин, Л. Н. Маскаева. Аналитика и контроль. 16 (4), 410 (2012).].
9. R. B. Salikhov, V. Kh. Abdrakhmanov, T. T. Yumalin. International Ural Conference on Electrical Power Engineering. Proceedings - 2021 International Ural Conference on Electrical Power Engineering, UralCon 2021. (2021) p. 229. Crossref
10. A. Bunakov, A. Lachinov, R. B. Salikhov. Macromolecular Symposia. 212 (1), 387 (2004). Crossref
11. R. B. Salikhov, A. N. Lachinov, R. G. Rakhmeev, R. M. Gadiev, A. R. Yusupov, S. N. Salazkin. Measurement Techniques. 52 (4), 427 (2009). Crossref
12. Y. Yi, C. Yu, H. Zhai, L. Jin, D. Cheng, Y. Lu, Z. Chen, L. Xu, J. Li, Q. Song, P. Yue, Z. Liu, Y. Li. Nano Energy. 103 (A), 107780 (2022). Crossref
13. W. Xuan, X. He, J. Chen, W. Wang, X. Wang, Y. Xu, Z. Xu, Y. Q. Fu, J. K. Luo. Nanoscale. 7 (16), 7430 (2015). Crossref
14. X. Zhang, A. Wang, Y. Chen, J. Bao, H. Xing. Ecotoxicology and Environmental Safety. 248, 114325 (2022). Crossref
15. S. Manivannan, A. M. Saranya, B. Renganathan, D. Sastikumar, G. Gobi, K. C. Park. Sensors and Actuators B: Chemical. 171, 634 (2012). Crossref
16. D. Zhang, J. Wu, Y. Cao. Sens. Actuators B. 287, 346 - 355 (2019). Crossref
17. S. Bardócz. Trends Food Sci. Technol. 6 (10), 341 (1995). Crossref
18. B. Timmer, W. Olthuis, A. Van Den Berg. Sens. Actuators B Chem. 107, 666 (2005). Crossref
19. A. N. Ivanov, Yu. I. Kuzin, G. A. Evtugyn. Sensors and Actuators B: Chemical. 281, 574 (2019). Crossref
20. J. Lutkenhaus, P. Hammond. Soft. Matter. 3, 804 (2007). Crossref
21. G. Evtugyn, T. Hianik. TrAC Trends in Anal. Chem. 79, 168 (2016). Crossref
22. A. N. Malanina, Yu. I. Kuzin, A. N. Ivanov, G. K. Ziyatdinova, D. N. Shurpik, I. I. Stoikov, G. A. Evtyugin. Journal of Analytical Chemistry. 77 (2), 164 (2022). (in Russian) [А. Н. Маланина, Ю. И. Кузин, А. Н. Иванов Г. К. Зиятдинова, Д. Н. Шурпик, И. И. Стойков, Г. А. Евтюгин. Журнал аналитической химии. 77 (2), 164 (2022).]. Crossref
23. Yu. A. Yarkaeva, D. I. Dubrovsky, R. A. Zilberg, V. N. Maistrenko. Journal of Analytical Chemistry. 75 (12), 1108 (2020). (in Russian) [Ю. А. Яркаева, Д. И. Дубровский, Р. А. Зильберг, В. Н. Майстренко. Журнал аналитической химии. 75 (12), 1108 (2020).]. Crossref
24. R. A. Zilberg, T. V. Berestova, R. R. Gizatov. Inorganics. 10 (8), 117 (2022). Crossref
25. R. A. Zilberg, I. V. Vakulin, Yu. B. Teres, I. I. Galimov. Chirality. 34 (11), 1472 (2022). Crossref
26. D. Wu, L. Zhu, Y. Li, X. Zhang, S. Xu, G. Yang, T. Delair. Carbohydrate Polymers. 238 (15), 116126 (2020). Crossref
27. M. dos Santos, E. Wrobel, V. dos Santos, S. Quináia, S. Fujiwara, J. Garcia, C. A. Pessôa, E. W. Scheffer, K. Wohnrath. J. Electrochem. Soc. 163 (9), B499 (2016). Crossref
28. I. Škugor Rončević, D. Krivić, M. Buljac, N. Vladislavić , M. Buzuk. Polyelectrolytes Assembly: A Powerful Tool for Electrochemical Sensing Application. Sensors. 20 (11), 3211 (2020). Crossref
29. D. Prifitis. Curr. Org. Chem. 19, 1819 (2015). Crossref
30. S. V. Kolesov, M. S. Gurina, R. H. Mudarisova. High-molecular compounds. Series A. 61 (3), 195 (2019). (in Russian) [С. В. Колесов, М. С. Гурина, Р. Х. Мударисова. Высокомолекулярные соединения. Серия А. 61 (3), 195 (2019).]. Crossref
31. S. V. Kolesov, M. S. Gurina, R. H. Mudarisova. Journal of General Chemistry. 88 (8), 1376 (2018). (in Russian) [С. В. Колесов, М. С. Гурина, Р. Х. Мударисова. Журнал общей химии. 88 (8), 1376 (2018).]. Crossref
32. A. J. Bard, L. R. Faulkner. Electrochemical Methods. Fundamentals and Application, 2nd edn. New York (2004).
33. A. Lasia. Electrochemical Impedance Spectroscopy and its Applications. NewYork (2014). Crossref
34. G. K. Ziyatdinova, S. N. Shtykov, De Gruyter, H. C. Budnikov. Nanoanalytics: Nanoobjects and Nanotech-nologies in Analytical Chemistry. (2018) pp. 223 - 252.
35. M. A. Atieh, O. Y. Bakather, B. Al-tawbini, A. A. Bukhari, F. A. Abuilaiwi, M. B. Fettouhi. Bioinorg. Chem. Appl. 9, 603978 (2010). Crossref
36. P. M. Ajayan. Nanotubes from Carbon. Chem. Rev. 99, 1787 (1999). Crossref
37. A. R. Tuktarov, R. B. Salikhov, A. A. Khuzin, N. R. Popod’ko, I. N. Safargalin, I. N. Mullagaliev, U. M. Dzhemilev. RSC Advances, 9 (13), 7505 (2019). Crossref
38. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai. Science. 287, 622 (2000). Crossref
39. S. Z. Bisri, J. Gao, V. Derenskyi, W. Gomulya, I. Iezhokin, P. Gordiichuk, A. Herrmann, M. A. Loi. Adv. Mater. 24, 6147 (2012). Crossref
40. N. Peng, Q. Zhang, C. L. Chow, O. K. Tan, N. Marzari. Nano Lett. 9, 1626 (2009). Crossref. Crossref
41. O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, C. A. Grimes. Sens. Actuators B. 81, 32 (2001). Crossref. Crossref
42. C. L. Cao, C. G. Hu, L. Fang, S. X. Wang, Y. S. Tian, C. Y. Pan. J. Nanomater. 2011 (10), 707303 (2011). Crossref. Crossref

Другие статьи на эту тему

Финансирование на английском языке

1. Российский научный фонд - The research was funded with the support of a state assignment (scientific code FZWU-2023-0002) and the Russian Science Foundation (Grant No. 21-13-00169)