Thermoelectric properties of CuO-LiCoO2‑La0.7Sr0.3MnO3 composition materials

Y.V. Kabirov, M.V. Belokobylsky, V.R. Popov, A.O. Letovaltsev, N.V. Prutsakova ORCID logo , A.L. Nikolaev ORCID logo , E.V. Chebanova показать трудоустройства и электронную почту
Получена 02 ноября 2022; Принята 05 февраля 2023;
Эта работа написана на английском языке
Цитирование: Y.V. Kabirov, M.V. Belokobylsky, V.R. Popov, A.O. Letovaltsev, N.V. Prutsakova, A.L. Nikolaev, E.V. Chebanova. Thermoelectric properties of CuO-LiCoO2‑La0.7Sr0.3MnO3 composition materials. Письма о материалах. 2023. Т.13. №2. С.153-157
BibTex   https://doi.org/10.22226/2410-3535-2023-2-153-157

Аннотация

Seebeck coefficient S and the power factor Р for the composite оf CuO - 40%, LiCoO2 - 30%, LSMO - 25%, GeO2 - 5%.For the widespread use of thermoelectric materials, it is necessary to reduce their cost, simplify the technology and increase the thermoelectric figure of merit, which is highly dependent on the Seebeck coefficient. Therefore, one of the promising directions is the search for composites for effective thermoelectric converters. In our article, three-component composites consisting of a conductive component of La0.7Sr0.3MnO3, (LSMO), and dielectric components: a mixture of CuO oxides and lithium cobaltite LiCoO2 have been prepared and experimentally investigated as such materials. The phase composition of the obtained samples was studied by X-ray diffraction, electron and optical microscopy. The thermoelectric properties of composite materials have been studied in the field of low temperatures from 30 to 250°C. The best results for Seebeck coefficient 550 μV / K and power factor 0.108 μW / (K2 ∙ m) are shown by experimentally selected compositions containing about 25 % by weight LSMO, 40 % CuO, 30 % LiCoO2, 5 % GeO2. However, the largest value of the power factor (1.859 μW / (K2 ∙ m) was achieved for the sample composition 77 % LSMO, 20 % CuO, 3 % GeO2 with Seebeck 310 μV / K. It should be noted that such three-phase samples have a “p”-type of conductivity. The presence of glass-forming germanium (3 – 5 %) oxide gives samples great mechanical stability.

Ссылки (25)

1. L. D. Ivanova. Semiconductors. 51 (7), 909 (2017). Crossref
2. A. F. Ioffe. Semiconductor thermoelements. Мoscow, Leningrad, АN SSSR (1956) 104 p. (in Russian) [Иоффе А. Ф. Полупроводниковые термоэлементы. Москва, Ленинград, АН СССР (1956) 104 с.].
3. S. A. Gridnev, Yu. E. Kalinin, V. A. Makagonov. Alternative energy and ecology. 34 - 36, 41 (2019). (in Russian) [С. А. Гриднев, Ю. Е. Калинин, В. А. Макагонов. Альтернативная энергетика и экология. 34 - 36, 41 (2019).].
4. N. Salah, N. Baghdadia, A. Alshahriea, A. Saeeda, A. R. Ansaria, A. Memica, K. Koumotoa. Journal of the European Ceramic Society. 39 (11), 3307 (2019). Crossref
5. Yu. E. Kalinin, V. A. Makagonov, Yu. V. Panin, A. S. Shuvaev. Bulletin of VSTU. 11, 57 (2012). (in Russian) [Ю. Е. Калинин, В. А. Макагонов, Ю. В. Панин, А. С. Шуваев. Вестник ВГТУ. 11, 57 (2012).].
6. Yu. E. Kalinin, V. A. Makagonov, Yu. V. Panin, Yu. A. Shchetinin. International Scientific Journal Alternative Energy and Ecology. 8 (130). 84 (2013). (in Russian) [Ю. Е. Калинин, В. А. Макагонов, Ю. В. Панин, Ю. А. Щетинин. Международный научный журнал Альтернативная энергетика и экология. 8 (130). 84 (2013).].
7. V. A. Makagonov, A. S. Krasnova, L. I. Yanchenko, I. M. Tregubov, M. A. Kashirin. Bulletin of the Voronezh State Technical University. 13 (6), 104 (2017). (in Russian) [В. А. Макагонов, А. С. Краснова, Л. И. Янченко, И. М. Трегубов, М. А. Каширин. Вестник Воронежского государственного технического университета. 13 (6), 104 (2017).].
8. M. K. Balapanov, R. K. Ishembetov, K. A. Kuterbekov, M. M. Kubenova, V. N. Danilenko, K. S. Nazarov, R. A. Yakshibaev. Letters on Materials. 6 (4), 360 (2016). (in Russian) [М. Х. Балапанов, Р. Х. Ишембетов, К. А. Кутербеков, А. Х. Баишева, Р. Ш. Палымбетов, С. Сахабаева, М. М. Кубенова, Р. А. Якшибаев. 6 (4), 360 (2016).]. Crossref
9. M. K. Balapanov, R. K. Ishembetov, K. A. Kuterbekov, A. K. Baisheva, R. S. Palymbetov, S. Sakhabaeva, M. M. Kubenova, R. A. Yakshibaev. Letters on Materials. 10 (4), 439 (2020). (in Russian) [М. Х. Балапанов, Р. Х. Ишембетов, К. А. Кутербеков, М. М. Кубенова, В. Н. Даниленко, К. С. Назаров, Р. А. Якшибаев. Письма о материалах. 10 (4), 439 (2020).]. Crossref
10. G. G. Gromov. Components & technologies. 8, 108 (2014). (in Russian) [Г. Г. Громов. Компоненты и технологии. 8, 108 (2014).].
11. D. Yu. Terekhov, A. A. Sherchenkov, I. A. Voloshchuk, D. V. Pepelyaev, M. Yu. Stern, P. I. Lazarenko, A. O. Yakubov, A. V. Babich. Nanotechnologies in Russia. 16 (3), 429 (2021). (in Russian) [Д. Ю. Терехов, А. А. Шерченков, И. А. Волощук, Д. В. Пепеляев, М. Ю. Штерн, П. И. Лазаренко, А. О. Якубов, А. В. Бабич. Российские нанотехнологии. 16 (3), 429 (2021).]. Crossref
12. A. V. Dmitriev, I. P. Zvyagin. Phys.-Usp. 53, 789 (2010). Crossref
13. A. V. Simkin, A. V. Biryukov, N. I. Repnikov, V. V. Khovailo. Bulletin of the ChSU. 7, 362 (2015). (in Russian) [А. В. Симкин, А. В. Бирюков, Н. И. Репников, В. В. Ховайло. Вестник ЧГУ. 7, 362 (2015).].
14. V. A. Belousov, A. B. Granovsky, Yu. E. Kalinin, A. V. Sitnikov. Phys. Solid State. 49 (10), 1848 (2007). Crossref
15. D. N. Trunov, E. S. Klementyev. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 12, 57 (2013). (in Russian) [Д. Н. Трунов, Е. С. Клементьев. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 12, 57 (2013).]. Crossref
16. B. Poudel, Q. Hao, Y. Ma, X. Y. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen, Z. F. Ren. Science. 320 (5876), 634 (2008). Crossref
17. N. Yoshida, T. Naito, H. Fujishiro. Japanese Journal of Applied Physics. 52, 031102 (2013). Crossref
18. R. Mulla, M. K. Rabinal. Materials for Renewable and Sustainable Energy. 10, 3 (2021). Crossref
19. D. Zappa, S. Dalola, G. Faglia, E. Comini, M. F, C. Soldano, V. Ferrari, G. Sberveglieri. Beilstein J. Nanotechnol. 5, 927 (2014). Crossref
20. A. Virgil, K. Bethkea, K. Rademann. Phys. Chem. Chem. Phys. 18, 10700 (2016). Crossref
21. A. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura. Phys. Rev. B. 51, 14103 (1995). Crossref
22. A. Fel’ts. Amorphous and glassy inorganic solids. Moscow, Mir (1986) 558 p. (in Russian) [А. Фельц. Аморфные и стеклообразные неорганические твердые тела. Москва, Мир (1986) 558 с.].
23. P. Vaqueiro, A. V. Powell. J. Mater. Chem. 20, 9577 (2010). Crossref
24. C. Wood. Rep. Prog. Phys. 51, 459 (1988). Crossref
25. N. S. Zefirov et al. Chemical encyclopedia. T.4. Moscow, Bolshaya Rossiiskaya Enzik. (1995) 641 p. (in Russian) [Н. С. Зефиров и др. Химическая энциклопедия. Т.4. Москва, Большая Российская энцик. (1995) 641 с.].

Другие статьи на эту тему

Финансирование на английском языке

1. Russian Science Foundation - 19-19-00444