Phase transitions in an ordered 2D array of cubic nanoparticles

Получена 06 марта 2022; Принята 22 апреля 2022;
Эта работа написана на английском языке
Цитирование: S.V. Belim, O.V. Lyakh. Phase transitions in an ordered 2D array of cubic nanoparticles. Письма о материалах. 2022. Т.12. №2. С.126-130
BibTex   https://doi.org/10.22226/2410-3535-2022-2-126-130

Аннотация

Array of cubic nanoparticles.The study of phase transitions in an ordered cubic nanoparticles 2D array was carried out by computer modeling. The study was performed for the Ising model. The Wolf cluster algorithm is used to simulate the phase transition in the system. The interaction between the nanoparticles is exchange. The interaction between spins for different particles is less in one particle. Cases of different energy values for the interaction between particles are considered. The particles are single-domain. The ferromagnetic phase transition is investigated. The total magnetization in the system is used as an order parameter. The phase transition temperature is calculated based on finite dimensional scaling theory using Binder cummulants. A computer experiment was performed. The phase transition temperature dependence on energy of interaction between particles is obtained. The temperature changes according to the logarithmic law. The parameters for the Curie temperature change law from the interaction energy of nanoparticles are calculated. Critical exponents of the system were calculated. The critical exponents are independent from the interaction energy between the particles. The critical exponent for magnetic susceptibility is equal γ = 2.21± 0.09. This value is different from the critical exponents for a solid film.

Ссылки (38)

1. A. Ehrmann, T. Blachowicz. Hyperfine Interact. 239, 48 (2018). Crossref
2. S. A. Claridge, A. W. Castleman Jr., S. N. Khanna et al. ACS Nano. 3, 244 (2009). Crossref
3. Y. Guo, Q. Du, P. Wang, S. Zhou, J. Zhao. Phys. Rev. Research. 3, 043231 (2021). Crossref
4. D. Bista, T. Sengupta, A. C. Reber, S. N. Khanna. Nanoscale. 13, 15763 (2021). Crossref
5. S. T. Bramwell, M. J. Gingras. Science. 294, 1495 (2001). Crossref
6. C. Castelnovo, R. Moessner, S. L. Sondhi. Nature. 451, 42 (2008). Crossref
7. G. Yumnam et al. Materials Today Physics. 22, 100574 (2022). Crossref
8. N. Keswani, R. Singh, Y. Nakajima, T. Som, P. Das. Phys. Rev. B. 102, 224436 (2020). Crossref
9. D. Gallina, G. M. Pastor. Nanomaterials. 11, 1392 (2021). Crossref
10. B. B. Krichevtsov, S. V. Gastev, D. S. Il’yushchenkov et al. Phys. Solid State. 51, 118 (2009). Crossref
11. D. Ming et al. Nanotechnology. 19, 505304 (2008). Crossref
12. E. Gu et al. Phys. Rev. B. 60, 4092 (1999). Crossref
13. M. J. Benitez et al. J. Phys.: Condens. Matter. 23, 126003 (2011). Crossref
14. M. Spasova et al. Journal of Magnetism and Magnetic Materials. 240, 40 (2002). Crossref
15. A. F. Schäffer, A. Sukhova, J. Berakdar. Journal of Magnetism and Magnetic Materials. 438, 70 (2017). Crossref
16. R. B. Morgunov et al. Applied Surface Science. 527, 146836 (2020). Crossref
17. H. Ren, G. Xiang. Nanomaterials. 11, 3199 (2021). Crossref
18. Y. Gao, Q. Y. Hou, Y. Liu, J. Supercond. Nov. Magn. 32, 2877 (2019). Crossref
19. C. Zhang, M. Zhou, Y. Zhang et al. J Supercond. Nov. Magn. 32, 3509 (2019). Crossref
20. M. S. Pereira et al. J Supercond. Nov. Magn. 33, 1721 (2020). Crossref
21. X.-L. Li, X.-H. Xu. Chinese Phys. B. 28, 098506 (2019). Crossref
22. X. Yin et al. Nano Lett. 19, 7085 (2019). Crossref
23. H. Ren, Y. Liu, L. Zhang, K. Liu. J. Semicond. 40, 061003 (2019). Crossref
24. J. Luo, H. Ren, X. Zhang, G. Xiang. AIP Adv. 10, 015337 (2020). Crossref
25. M. Anand. Journal of Magnetism and Magnetic Materials. 540, 168461 (2021). Crossref
26. A. Fabian et al. Phys. Rev. B. 98, 054401 (2018). Crossref
27. S. V. Belim et al. Chelyabinsk Physical and Mathematical Journal. 5 (4), 463 (2020). (in Russian) [С. В. Белим и др. Челябинский Физико-Математический Журнал. 5 (4), 463 (2020).]. Crossref
28. S. V. Belim. Advances in Natural Sciences: Nanoscience and Nanotechnology. 11 (4), 045011 (2020). Crossref
29. U. Wolff. Physical Review Letters. 62, 361 (1988). Crossref
30. K. Binder. Phys. Rev. Lett. 47, 693 (1981). Crossref
31. D. P. Landau, K. Binder. Phys. Rev. B. 17, 2328 (1978). Crossref
32. N. S. Sokolov et al. Phys. Rev. B. 87, 125407 (2013). Crossref
33. D. Küpper, S. Easton, J. A. C. Bland. Journal of Applied Physics. 102, 083902 (2007). Crossref
34. S. Sako, K. Ohshima, M. Sakai. Journal of the Physical Society of Japan. 70 (7), 2134 (2001). Crossref
35. F. O. Schumann, M. E. Buckley, J. A. C. Bland. Phys. Rev. B. 50, 16424 (1994). Crossref
36. S. Hope et al. J. Appl. Phys. 85, 6094 (1999). Crossref
37. E. Gu, S. Hope, M. Tselepi, J. A. C. Bland. Phys. Rev. B. 60, 4092 (1999). Crossref
38. M. Tselepi, Y. B. Xu, D. J. Freeland, T. A. Moore, J. A. C. Bland, J. Magn. Magn. Mater. 226 - 230, 1585 (2001). Crossref

Другие статьи на эту тему

Финансирование на английском языке

1. Russian Foundation for Basic Research - 20-07-00053