Влияние деформационной обработки в упорядоченной фазовой области на микроструктуру и механические свойства β-затвердевающих γ-TiAl сплавов

В.М. Имаев, А.А. Ганеев, Т.И. Назарова, Р.М. Имаев показать трудоустройства и электронную почту
Получена: 25 сентября 2019; Исправлена: 08 октября 2019; Принята: 09 октября 2019
Эта работа написана на английском языке
Цитирование: В.М. Имаев, А.А. Ганеев, Т.И. Назарова, Р.М. Имаев. Влияние деформационной обработки в упорядоченной фазовой области на микроструктуру и механические свойства β-затвердевающих γ-TiAl сплавов. Письма о материалах. 2019. Т.9. №4s. С.528-533
BibTex   https://doi.org/10.22226/2410-3535-2019-4-528-533

Аннотация

Показана существенная эволюция микроструктуры литого сплава Ti-44Al-5Nb-0.2B в результате осадки на небольшую степень  и последующей термической обработки.Effect of hot forging at lower temperatures, in the ordered α2 + γ + βo / α2 + γ phase field, followed by heat treatment on the microstructure and tensile properties has been studied for three β-solidifying γ-TiAl alloys. The alloy compositions were Ti-45Al-5Nb-1Mo-0.2B, Ti-43.7Al-4.2Nb-0.5Mo-0.2C-0.2B and Ti-44Al-5Nb-0.2B (at.%). The phase transformation sequences were defined for the alloys. Hot forging procedures for the Ti-45Al and Ti-43.7Al based alloys included forging in the temperature range of the α + γ + β(βo) / α + α2 + γ + β(βo) and α2 + γ + βo phase fields. This led to refined microstructures due to occurrence of dynamic recrystallization and globularization processes. The as-forged alloys showed excellent superplastic properties. Particularly, superior superplastic properties (El >>1000 % and low flow stresses), never reached in γ-TiAl alloys, were obtained for the Ti-43.7Al based alloy in the temperature range of 900 – 1000°C. The Ti-44Al based alloy was subjected to upset forging using a small strain value in the temperature range of the α2 + γ phase field. All forged alloys were further subjected to two-stage annealing in the α + γ + β(βo) and α2 + γ + βo or α2 + γ phase fields. As a result, refined duplex microstructures were obtained in the alloys. Tensile tests were performed for the forged and heat treated alloys. They showed quite reasonable tensile properties as compared with those obtained in similar alloys after high-temperature hot forging followed by heat treatment. Particularly, the Ti-45Al-5Nb-0.2B alloy in the duplex condition exhibited El = 3.1 % and UTS = 860 MPa at room temperature and El = 6.5 % and UTS = 790 MPa at 700°C.

Ссылки (21)

1. B. P. Bewlay, M. Weimer, T. Kelly, A. Suzuki, P. R. Subramanian. In: Intermetallic-based alloys - science, technology and applications (ed. by I. Baker, M. Heilmaier, S. Kumar, K. Yoshimi). Warrendale (PA), TMS, MRS 1516 (2013) pp. 49 - 58. Crossref
2. H. Clemens, S. Mayer. Adv. Eng. Mater. 15, 191 (2013). Crossref
3. V. Küstner, M. Oehring, A. Chatterjee, V. Güther, H.-G. Brokmeier, H. Clemens, et al. In: Gamma titanium aluminides 2003 (ed. by Y.-W. Kim, H. Clemens, A. H. Rosenberger). Warrendale (PA), TMS (2003) pp. 89 - 96.
4. Y. Jin, J. N. Wang, J. Yang, Y. Wang. Scr. Mater. 51, 113 (2004). Crossref
5. R. M. Imayev, V. M. Imayev, M. Oehring, F. Appel. Intermet. 15, 451 (2007). Crossref
6. H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, A. Bartels. Adv. Eng. Mater. 10, 707 (2008). Crossref
7. D. Hu, H. Jiang, X. Wu. Intermet. 17, 744 (2009). Crossref
8. S. Bolz, M. Oehring, J. Lindemann, F. Pyczak, J. Paul, A. Stark, T. Lippmann, S. Schrüfer, D. Roth-Fagaraseanu, A. Schreyer, S. Weiß. Intermet. 58, 71 (2015). Crossref
9. N. Z. Niu, Y. Y. Chen, F. T. Kong, J. P. Lin. Intermet. 31, 249 (2012). Crossref
10. Y. Su, F. Kong, Y. Chen, N. Gao, D. Zhang. Intermet. 34, 29 (2013). Crossref
11. E. Schwaighofer, H. Clemens, J. Lindemann, A. Stark, S. Mayer. Mater. Sci. Eng. A. 614, 297 (2014). Crossref
12. F. Appel, M. Oehring, J. D. H. Paul. Adv. Eng. Mater. 8, 371 (2006). Crossref
13. J. D. H. Paul, U. Lorenz, M. Oehring, F. Appel. Intermet. 32, 318 (2013). Crossref
14. W. Xu, X. Jin, K. Huang, Y. Zong, S. Wu, X. Zhong, F. Kong, D. Shan, S. Nutt. Mater. Sci. Eng. A. 705, 200 (2017). Crossref
15. V. M. Imayev, R. M. Imayev, T. I. Oleneva, T. G. Khismatullin. Phys. Met. & Metallogr. 106 (6), 641 (2008). Crossref
16. T. I. Nazarova, V. M. Imayev, R. M. Imayev, R. R. Mulyukov. Phys. of Met. & Metallogr. 117 (10), 1038 (2016). Crossref
17. V. M. Imayev, A. A. Ganeev, R. M. Imayev. Intermet. 101, 81 (2018). Crossref
18. V. M. Imayev, R. M. Imayev, T. G. Khismatullin, T. I. Oleneva, V. Gühter, H.-J. Fecht. Mater. Sci. Forum. 638 - 642, 235 (2010). Crossref
19. V. M. Imayev, T. G. Khismatullin, R. M. Imayev. Phys. of Metals & Metallogr. 109 (4), 402 (2010). Crossref
20. E. Schwaighofer, B. Rashkova, H. Clemens, A. Stark, S. Mayer. Intermet. 46, 173 (2014). Crossref
21. V. M. Imayev, R. M. Imayev, T. I. Nazarova, R. A. Gaisin, A. A. Ganeev. Letters on Materials. 8 (4s), 554 (2018). Crossref

Другие статьи на эту тему

Финансирование

1. Работа была выполнена в рамках государственного задания ИПСМ РАН. - No. AAAA-A17‑117041310215‑4