Сверхпластичность мелкозернистого интерметаллидного сплава Ti-21Al-18Nb-1Mo-2V-0.3Si

С.Ж. Ку, А.Х. Фенг ORCID logo , М.Р. Шагиев, Х. Си, Б.Б. Ли, Дж. Шен показать трудоустройства и электронную почту
Получена 21 ноября 2018; Принята 26 ноября 2018;
Эта работа написана на английском языке
Цитирование: С.Ж. Ку, А.Х. Фенг, М.Р. Шагиев, Х. Си, Б.Б. Ли, Дж. Шен. Сверхпластичность мелкозернистого интерметаллидного сплава Ti-21Al-18Nb-1Mo-2V-0.3Si. Письма о материалах. 2018. Т.8. №4s. С.567-571
BibTex   https://doi.org/10.22226/2410-3535-2018-4-567-571

Аннотация

The novel Ti-21Al-18Nb-1Mo-2V-0.3Si intermetallic alloy with fine-grained structure exhibited superplastic behavior in the temperature range of 875-1000C with the highest elongation of 958% at 960C. Microstructure analysis revealed that under the optimum superplastic conditions the B2/Alpha2 phase boundary sliding played an important role during superplastic deformation of the Ti2AlNb-based alloy. At 960C, the deformation induced grain growth along with the signs of extensive grain rotation and the O→B2→Alpha2 phase transformations were also observed.Superplastic behavior of the novel Ti-21Al-18Nb-1Mo-2V-0.3Si intermetallic alloy with rather low density of 5.067 g/cm3 was studied. The homogeneous fine-grained microstructure in the alloy, which contained three ordered phases: O (Ti2AlNb), B2 (Ti-Al-Nb) and Alpha2 (Ti3Al), was produced by thermomechanical processing. It included the hot isostatic pressing at 1080C (P=140 MPa for 6 h), two-step quasi-isothermal forging at 870-1060C, and pack rolling at 930-950C. The fine-grained alloy exhibited high superplastic elongations exceeding 230% in the temperature range of 875-1000C and at an initial strain rate of 0.0004 1/s. The maximum elongation of 958% was obtained at 960C. Microstructure analysis revealed that maximum superplastic elongation was obtained when material had approximately equal content of the main B2- and Alpha2-phases suggesting that the B2/Alpha2 phase boundary sliding plays an important role during superplastic deformation. Deviation the Burgers orientation relationships: (110)B2//(0001)Alpha2, [1-1-1]B2//[1-210]Alpha2 pointed out to extensive grain rotation during superplastic flow. The deformation induced grain growth testified to grain boundary migration. Besides, the signs of the O→B2→Alpha2 phase transformations were also observed after testing at 960C. The minor content of the O-phase in the Ti2AlNb-based intermetallic alloy was present at 960C in the (Alpha2+O)-lamellar structure. Crystallographic orientations between the Alpha2- and the O-phases were found to be (1010)Alpha2//(110)O, [0001]Alpha2//[001]O.

Ссылки (20)

1. D. Banerjee, A. K. Gogia, T. K. Nandi, V. A. Joshi. Acta Metall. 36, 871 (1988).
2. D. Banerjee. Prog. Mater. Sci. 42, 135 (1997).
3. J. M. Xiang, G. B. Mi, S. J. Qu, X. Huang, Z. Chen, A. H. Feng, J. Shen, D. L. Chen. Scientific Reports. 8, 12761 (2018).
4. F. Tang, S. Nakazawa, M. Hagiwara. Mater. Sci. Eng. A. 329 - 331, 492 (2002).
5. L. A. Bendersky. Scripta Metall. Mater. 29, 1645 (1993).
6. L. A. Bendersky, A. Roytburd, W. J. Boettinger. Acta Metall. Mater. 42, 2323 (1994).
7. L. A. Bendersky, W. J. Boettinger. Acta Metall. Mater. 42, 2337 (1994).
8. X. Ren, M. Hagiwara. Acta Mater. 49, 3971 (2001).
9. C. J. Boehlert. Mater. Sci. Eng. A. 279, 118 (2000).
10. O. A. Kaibyshev. Superplasticity of Alloys, Intermetallides and Ceramics. Berlin, Springer-Verlag (1992) 317 p.
11. M. R. Shagiev, G. A. Salishchev. Mat. Sci. Forum. 584 - 586, 153 (2008).
12. Z. X. Zhang, S. J. Qu, A. H. Feng, J. Shen. Mater. Sci. Eng. A. 692, 127 (2017).
13. Y. Rosenberg, A. K. Mukherjee. Mater. Sci. Eng. A. 192 - 193, 788 (1995).
14. D. Jobart, J. J. Blandin. Mater. Sci. Eng. A. 207, 170 (1996).
15. Y. T. Wu, C. H. Koo. Intermetallics. 5, 29 (1997).
16. J. H. Kim, C. G. Park, T. K. Ha, Y. W. Chang. Mater. Sci. Eng. A. 269, 197 (1999).
17. O. A. Kaibyshev. Plasticity and Superplasticity of Metals. Moscow, Metallurgy (1975) 280 p.
18. W. B. Lee, H. S. Yang, Y. W. Kim, A. K. Mukherjee. Scripta Metall. Mater. 29, 1403 (1993).
19. M. G. Zelin, A. K. Mukherjee. Acta Metall. Mater. 43, 2359 (1995).
20. J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, K. Maruyama. Acta Mater. 48, 2059 (2000).

Цитирования (4)

1.
Y. Zhang, A. Feng, S. Qu, J. Shen, D. Chen. Journal of Materials Science & Technology. 44, 140 (2020). Crossref
2.
X. Chen, Z. Zhang, F. Xie, X. Wu, T. Ma, W. Li, D. Sun. Metals. 11(5), 802 (2021). Crossref
3.
J. Chen, Q. Chen, S.J. Qu, H.P. Xiang, C. Wang, J.B. Gao, A.H. Feng, D.L. Chen. Scripta Materialia. 199, 113852 (2021). Crossref
4.
Z. Shang, H. Niu, A. Wang, T. Lei, G. Liu, L. Zhong. Journal of Materials Research and Technology. 30, 1095 (2024). Crossref

Другие статьи на эту тему