Аннотация

The paper presents a method for determining the elastic moduli and Poisson’s ratios of a material under compression and tension. The method is based on the results of strain measurements by fiber-optic sensors in a rectangular beam subjected to four-point bending. The relationships for determining the elastic moduli follow from an analytical solution for bending a rectangular beam made of a material with different moduli in compression and tension, assuming the Euler−Bernoulli hypothesis is satisfied. The relationships for determining Poisson’s ratios follow from the assumption of a uniaxial stress state in the strain measurement zone. An algorithm is presented for estimating the errors in determining the elastic constants, which are due to deviations from the conditions of the Euler−Bernoulli hypothesis and a uniaxial stress state for the corresponding beam dimensions. Relations are presented for estimating the maximum errors in determining the elastic constants, based on the obtained relationships for their determination, associated with the error in measuring strains by the fiber-optic sensors used. Options for attaching the fiber-optic sensors to the surface of the specimens are considered. For a set of rock salt samples, the results of determining the elastic moduli and Poisson’s ratios are presented, along with estimates of the errors in their determination, due to strain measurement errors and sample dimensions. The qualitative results obtained for the elastic constants in compression and tension, taking into account their errors, allow to conclude that rock salt is not a bi-modulus material.
Ссылки (22)
1. N. M. Proskuriakov, R. S. Permiakov, A. K. Chernikov, Physical and mechanical properties of salt rocks, Nedra, Leningrad, 1973, 272 p. (in Russian) [Н. М. Проскуряков, Р. С. Пермяков, А. К. Черников, Физико-механические свойства соляных пород, Недра, Ленинград, 1973, 272 с.].
2. A. A. Bariakh, S. A. Konstantinova, V. A. Asanov, Deformation of salt rocks, UrO RAN, Ekaterinburg, 1996, 204 p. (in Russian) [А. А. Барях, С. А. Константинова, В. А. Асанов, Деформирование соляных пород, УрО РАН, Екатеринбург, 1996, 204 с.].
3. V. G. Khloptsov, M. V. Semenova, D. V. Khloptsov, Mechanical properties of rock salt, Izhevsk Institute of Computer Research, Izhevsk, 2022, 104 p. (in Russian) [В. Г. Хлопцов, М. В. Семёнова, Д. В. Хлопцов, Механические свойства каменной соли, Ижевский институт компьютерных исследований, Ижевск, 2022, 104 c.].
8.
B. Jiang, F. Ma, H. Gao, Q. Wang, S. Cai, C. Zhang, Z. Bian, G. Liu, The response mechanism and testing method of the rock elastic modulus while drilling, Geomatics, Nat. Hazards Risk. 15 (2024) 235449810. I. L. Pankov, I. A. Morozov, The research into friction factor between the ends of specimens of varying heights and press plates on mechanical performance of salt rocks, News of the Higher Institutions. Mining Journal 2 (2015) 107 -113. (in Russian) [И. Л. Паньков, И. А. Морозов, Исследование влияния коэффициента трения между торцами образцов различной высоты и плитами пресса на механические показатели соляных пород, Известия вузов. Горный журнал 2 (2015) 107 -113.].
13.
V. A. Asanov, I. L. Pankov, V. S. Kuzminyh, I. A. Morozov, The methodical aspects of strength, deformation and energy characteristic determination of salt rocks under direct tensile loading of rock specimens in laboratory conditions, PNRPU Mechanics Bulletin 4 (2018) 58 - 68. (in Russian) [В. А. Асанов, И. Л. Паньков, В. С. Кузьминых, И. А. Морозов, Методические аспекты определения прочностных, деформационных и энергетических характеристик соляных пород при прямом растяжении породных образцов в лабораторных условиях, Вестник ПНИПУ. Механика 4 (2018) 58 - 68.]14. I. L. Pankov, I. I. Garaeva, Study of mechanical properties of salt rocks under tension, MIAB 10 (2011) 87 - 90. (in Russian) [И. Л. Паньков, Ю. И. Гараева, Исследование механических свойств соляных пород при растяжении, ГИАБ 10 (2011) 87 - 90.].
Финансирование на английском языке
1. Russian Science Foundation - 19-77-30008