Laser method of intensification of the process of diffusion welding of 12X18H10T stainless steel

A.V. Lyushinsky ORCID logo , T.V. Malinsky, Y.V. Khomich ORCID logo , V.A. Yamshchikov показать трудоустройства и электронную почту
Получена 23 сентября 2024; Принята 26 января 2025;
Эта работа написана на английском языке
Цитирование: A.V. Lyushinsky, T.V. Malinsky, Y.V. Khomich, V.A. Yamshchikov. Laser method of intensification of the process of diffusion welding of 12X18H10T stainless steel. Письма о материалах. 2025. Т.15. №1. С.43-48
BibTex   https://doi.org/10.48612/letters/2025-1-43-48

Аннотация

Pretreatment of the welded surfaces with laser radiation before diffusion welding leads to an increase in the strength of the joint due to the activation of these surfaces and, consequently, to the possibility of reducing the parameters of the diffusion welding process (temperature and welding pressure).The method of intensification of the diffusion welding process by preliminary laser treatment of the welded surfaces for their activation in order to reduce the thermal deformation effect on the welded parts is considered. The effect of laser radiation with a beam diameter of 220 μm and an energy density in the range from 2.1 to 4.3 J / cm2 on the modification of the surface relief of 12X18H10T stainless steel samples and on the quality of the diffusion compound at a temperature of 800°C, a welding pressure of 2 kgf / mm2 and a holding time of 15 minutes was studied. Strength and fractographic studies have been carried out, which have shown that the formation of cone-shaped micro-dimensions with a minimum angle at the top leads to a significant increase in strength of welded joints from 1.1 kgf / mm2 for laser-untreated samples to 10.8 kgf / mm2, for samples treated with a laser with an energy density of 4.3 J / cm2 in two mutually perpendicular processing directions. It is hypothesized that the intensification of physical contact at micro-steps formed by laser radiation is due to an increase in the density of dislocations and an increase in the stress level in the crystal lattice due to the grinding of the size of the initial metal grain. Recommendations for the further development of laser surface modification technology are presented.

Ссылки (24)

1. N. F. Kazakov, Diffusion welding of materials, Moscow, Mechanical Engineering, 1976, 312 p. (in Russian) [Н. Ф. Казаков, Диффузионная сварка материалов, Москва, Машиностроение, 1976, 312с.].
2. Y. L. Krasulin, Interaction of metal with semiconductor in solid phase, Moscow, Nauka, 1971, 119 p. (in Russian) [Ю. Л. Красулин, Взаимодействие металла с полупроводником в твердой фазе, Москва, Наука, 1971, 119с.].
3. L. N. Larikov, V. R. Ryabov, V. M. Falchenko, Diffusion processes in the solid phase, Moscow, Mashinostroenie, 1975, 192 p. (in Russian) [Л. Н. Лариков, В. Р. Рябов, В. М. Фальченко, Диффузионные процессы в твердой фазе, Москва, Машиностроение, 1975, 192с.].
4. E. S. Karakozov, Compound of metals in the solid phase, Moscow, Metallurgy, 1976, 264 p. (in Russian) [Э. С. Каракозов, Соединение металлов в твердой фазе, Москва, Металлургия, 1976, 264 с.].
5. R. A. Musin, G. V. Konyushkov, Connection of metals with ceramic materials, Moscow, Mashinostroenie, 1991, 224 p. (in Russian) [Р. А. Мусин, Г. В. Конюшков, Соединение металлов с керамическими материалами, Москва Машиностроение, 1991, 224 с.].
6. R. R. Mulyukov et al., Superplasticity of ultrafine-grained alloys: experiment, theory, technology, Moscow, Nauka, 2014, 284 p. (in Russian) [Р. Р. Мулюков и др., Сверхпластичность ультрамелкозернистых сплавов: эксперимент, теория, технология, Москва, Наука, 2014, 284 с.].
9. A. V. Lyushinsky, Special welding methods, Moscow, Knorus, 2020, 332 p. (in Russian) [А. В. Люшинский Специальные методы сварки, Москва, Кнорус, 2020, 332 с.].
10. A. V. Lyushinsky, Comparison of methods of intensification of the diffusion welding process, Welding production, 12 (2021) 22 - 29. (in Russian) [А. В. Люшинский, Сравнение методов интенсификации процесса диффузионной сварки, Сварочное производство 12 (2021) 22 - 29.].
12. R. Ya. Lutfullin, M. Kh. Mukhametrakhimov, Solid-phase joint formation in Ti-6Al-4V alloy under conditions of low temperature superplasticity, Rev. Adv. Mater.Sci. 25, 2 (2010) 142 -147.
13. A. V. Lyushinsky, A. N. Servetnik, A. V. Semenov, Features of diffusion welding of Inconel 718 samples obtained by additive technology, Physics and Chemistry of Materials Processing 4 (2024) 14 - 20. (in Russian) [А. В. Люшинский, А. Н. Серветник, А. В. Семенов, Особенности диффузионной сварки образцов Inconel 718, полученных аддитивной технологией, Физика и химия обработки материалов 4 (2024) 14 - 20.].
14. Yu. V. Khomich, V. A. Yamshchikov, The effect of preliminary laser surface treatment on the mechanical properties of a solid-phase compound of an iron-nickel alloy in diffusion welding, Chapter 6, In: Advanced Materials, Proceedings of the International conference on Physics and Mechanics of New Materials and Their Applications (PHENMA 2019), pp. 61- 71.
15. Yu. A. Vashukov, S. F. Demichev, V. D. Elenev, T. V. Malinsky, S. I. Mikolutsky, Yu. V. Khomich, V. A. Yamshchikov, Laser surface treatment of metal alloys for diffusion welding, Applied Physics 1 (2019) 82 - 87. (in Russian) [Ю. А. Вашуков, С. Ф. Демичев, В. Д. Еленев, Т. В. Малинский, С. И. Миколуцкий, Ю. В. Хомич, В. А. Ямщиков, Лазерная обработка поверхности металлических сплавов для диффузионной сварки, Прикладная физика 1 (2019) 82 - 87.].
16. A. V. Lyushinsky, V. N. Elkin, V. N. Petrovsky, Diffusion welding of metal surfaces subjected to preliminary laser treatment, Physics and chemistry of materials processing 5 (2021) 22 - 29. (in Russian) [А. В. Люшинский, В. Н. Ёлкин, В. Н. Петровский, Диффузионная сварка металлических поверхностей, подвергшихся предварительной лазерной обработке, Физика и химия обработки материалов 5 (2021) 22 - 29.].
17. R. E. Rovinsky, V. E. Rogalin, V. M. Rosenberg, M. D. Teplitsky, Changing the structure of a copper-chromium alloy irradiated by a CO2 laser pulse, Phys. and chemical. processing. mater. 3 (1980) 7 -11. (in Russian) [Р. Е. Ровинский, В. Е. Рогалин, В. М. Розенберг, М. Д. Теплицкий, Изменение структуры сплава медь-хром, облученного импульсом СО2-лазера, Физ. и хим. обраб. матер. 3 (1980) 7 -11.].
18. M. E. Gurevich, L. N. Larikov, V. F. Mazanko, A. E. Pogorelov, V. M. Falchenko, The effect of multiple laser exposure on mass transfer in iron, Metallophysics 73 (1978) 80 - 83. (in Russian) [М. Е. Гуревич, Л. Н. Лариков, В. Ф. Мазанко, А. Е. Погорелов, В. М. Фальченко, Влияние многократного лазерного воздействия на массоперенос в железе, Металлофизика 73 (1978) 80 - 83.].
20. D. V. Ganin, S. I. Mikolutskiy, V. N. Tokarev, V. Yu. Khomich, V. A. Shmakov, V. A. Yamshchikov, Formation of micron and submicron structures on a zirconium oxide surface exposed to nanosecond laser radiation, Quantum Electronics 44, 4 (2014) 317 - 321.
24. V. Kovalenko, Laser Micro- and Nanoprocessing, International Journal of Nanomanufacturing 1, 2 (2006) 173 -180.

Финансирование на английском языке

1. Russian Science Foundation - 24-19-00727