Growth of hardening nitride phase particles in a Ni-Co-Cr-Ti alloy during annealing

Y.R. Kolobov, B.S. Bokshtein, M.G. Tokmachev ORCID logo , A.O. Rodin, S.S. Manokhin, A.Y. Tokmacheva-Kolobova, S.V. Ovsepyan показать трудоустройства и электронную почту
Получена 27 декабря 2023; Принята 27 февраля 2024;
Эта работа написана на английском языке
Цитирование: Y.R. Kolobov, B.S. Bokshtein, M.G. Tokmachev, A.O. Rodin, S.S. Manokhin, A.Y. Tokmacheva-Kolobova, S.V. Ovsepyan. Growth of hardening nitride phase particles in a Ni-Co-Cr-Ti alloy during annealing. Письма о материалах. 2024. Т.14. №1. С.62-65
BibTex   https://doi.org/10.48612/letters/2024-1-62-65

Аннотация

Figure shows experimental data on particle growth during isothermal annealing at 1300 °C as a time dependence of the average particle volume. For particles located at different distances from the sample surface, these dependences are approximated by straight lines with close angular coefficients (curves 1 and 2).The microstructure and phase composition of a nickel-based heat-resistant alloy samples doped with Cr, Co, Ti, W and Mo (alloy VZh171) in the nitrided state were studied using methods of autoemission high-resolution scanning electron microscopy. The change in the particle sizes of titanium nitrides during isothermal annealing at a temperature of 1300°C for 1.5, 2 and 3 hours was studied. It is shown that the evolution of particle sizes under the studied conditions corresponds to the Lifshitz-Slezov-Wagner model of diffusive coalescence of particles.

Ссылки (20)

1. M. M. Bakradze, S. V. Ovsepyan, A. A. Buiakina, B. S. Lomberg. Inorganic Materials: Applied Research. 9, 1044 (2018).
2. M. V. Akhmedzyanov, S. V. Ovsepyan, A. O. Rodin, B. S. Lomberg, O. I. Rastorgueva. Metal Science and Heat Treatment. 64, 231 (2022).
3. Q. Ju, Y. L. Zhang, J. T. Tong, H. P. Ma. Journal of Iron and Steel Research. 30, 156 (2018).
4. Q. Ju, M. Hu, Y.-L. Zhang, L. Chen, H.-P. Ma. Transactions of Materials and Heat Treatment. 39, 25 (2018).
5. S. A. Bozhko, Y. R. Kolobov, S. S. Manokhin. Russ. Phys. J. 62, 2306 (2020).
6. S. V. Ovsepyan, Y. R. Kolobov, M. V. Akhmedzyanov, S. S. Manokhin, E. V. Filonova. Inorganic Materials: Applied Research. 13, 828 (2022).
7. S. V. Ovsepian, B. S. Bokstein, M. V. Akhmedzianov, A. O. Rodin, I. S. Mazalov. Material Science. 6, 21 (2014). (in Russian) [С. В. Овсепян, Б. С. Бокштейн, М. В. Ахмедзианов, А. О. Родин, И. С. Мазалов. Материаловедение. 6, 21 (2014).].
8. J. W. Christian. Materials Today. 6, 53 (2002).
9. C. Wert. J. Appl. Phys. 20, 943 (1949).
10. C. Zener. J. Appl. Phys. 20, 950 (1949).
11. F. S. Ham. Quart. Appl. Math. 17, 137 (1959).
12. I. M. Lifshitz, V. V. Slyozov. J Phys. Chem. Solids. 19, 35 (1961).
13. C. Wagner. Zs. Electrochem. 65, 581 (1961).
14. V. A. Dub, A. Rodin, B. Bokstein, S. Belikov, P. Kozlov, I. Schepkin, V. S. Dub. Materials Letters. 215, 134 (2018).
15. C. A. Schneider, W. S. Rasband, K. W. Eliceiri. Nature Methods. 9, 671 (2012).
16. L. R. Feret. La grosseur des grains des matières pulvérulentes. Premières Communications de la Nouvelle Association Internationale pour l’Essai des Matériaux, Groupe D (1930) pp. 428 - 436.
18. U. Krupp, H. J. Christ. Oxidation of metals. 52, 277 (1999).
19. R. Hales, A. C. Hill. Metal Science. 11, 241 (1977).
20. D. E. Kablov, V. V. Sidorov, Yu. A. Puchkov. Aviation Materials and Technologies. 40 (1), 24 (2016). (in Russian) [Д. Э. Каблов, В. В. Сидоров, Ю. А. Пучков, Авиационные материалы и технологии. 40 (1), 24 (2016).].

Финансирование на английском языке

1. Russian Scientific Foundation - 22-13-00324
2. State Assignment - FFSG-2024-0016, state registration No. 124020500064-2