Design and mechanical performance of additively manufactured porous structures to develop bioactive titanium scaffolds

N.A. Enikeev, M.M. Abramova ORCID logo , A.V. Kapustin, V.V. Polyakova, A.A. Ryzhkin, E.S. Kudryashova, N.Yu. Anisimova ORCID logo , M.V. Kiselevskiy показать трудоустройства и электронную почту
Получена 24 ноября 2023; Принята 21 января 2024;
Эта работа написана на английском языке
Цитирование: N.A. Enikeev, M.M. Abramova, A.V. Kapustin, V.V. Polyakova, A.A. Ryzhkin, E.S. Kudryashova, N.Yu. Anisimova, M.V. Kiselevskiy. Design and mechanical performance of additively manufactured porous structures to develop bioactive titanium scaffolds. Письма о материалах. 2024. Т.14. №1. С.3-8
BibTex   https://doi.org/10.48612/letters/-2024-1-3-8

Аннотация

Ti-based metallic porous structures with adjustable mechanical performance developed by computer-assisted design and produced by laser powder bed fusion to engineer advanced bioactive implants for orthopedic applications.Ti-based metallic porous structures produced by additive manufacturing can be effectively used to develop advanced bioactive implants for orthopedic applications. We developed several models of porous structures by computer-assisted design and produced porous specimens of Ti-6Al-4V by laser powder bed fusion. We show how variation in pore geometry and dimensions can influence the mechanical performance of porous specimens under compression tests. Increasing porosity with a fixed elementary unit size leads to a significant reduction in specimen’s strength of the same internal topology, while differently designed porous structures with the same pore size provide a considerable variation in the strength as well. Elastic properties of porous materials can be adjusted closer to those of bone tissue depending on the model parameters. The models demonstrating a promising potential to be used in medicine are discussed.

Ссылки (26)

1. H. Newman, Y. V. Shih, S. Varghese. Biomaterials. 277, 121114 (2021).
2. M. V. Kiselevskiy, N. Yu. Anisimova, A. V. Kapustin, A. A. Ryzhkin, D. N. Kuznetsova, V. V. Polyakova, N. A. Enikeev. Biomimetics. 8, 546 (2023).
3. Y. Lv, B. Wang, G. Liu, Y. Tang, E. Lu, K. Xie, C. Lan, J. Liu, Z. Qin, L. Wang. Front. Bioeng. Biotechnol. 9, 641130 (2021).
4. E. Davoodi, H. Montazerian, A. S. Mirhakimi, M. Zhianmanesh, O. Ibhadode, S. I. Shahabad, R. Esmaeilizadeh, E. Sarikhanig, S. Toorandaz, S. A. Sarabi et al. Bioact. Mater. 15, 214 (2022).
5. A. du Plessis, N. Razavi, M. Benedetti, S. Murchio, M. Leary, M. Watson, D. Bhate, F. Berto. Progr. Mater. Sci. 125, 100918 (2022).
6. O. Al-Ketan, R. Rowshan, R. Abu Al-Rub. Additive Manuf. 19, 167 (2018).
7. T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt. Mater. Des. 183, 108137 (2019).
8. F. S. L. Bobbert, K. Lietaert, A. A. Eftekhari, B. Pouran, S. M. Ahmadi, H. Weinans, A. A. Zadpoor. Acta Biomater. 53, 572 (2017).
9. Z. Zhao, J. Li, D. Yao, Y. Wei. J. Mater. Chem. B. 10, 9699 (2022).
10. A. A. Raheem, P. Hameed, R. Whenish, R. S. Elsen, A. G, A. K. Jaiswal, K. G. Prashanth, G. Manivasagam. Biomimetics. 6, 65 (2021).
11. O. Al-Ketan, R. Abu Al-Rub. Mater. Design Process. Commun. 3, e205 (2020).
12. S. Hwang, S. An, U. Robles, R. C. Rumpf. J. Prosthet. Dent. 129, 191 (2023).
13. V. V. Popov Jr., A. Katz-Demyanetz, A. Kovalevsky, R. Biletskiy, E. Strokin, A. Garkun, M. Bamberger. Lett. Mater. 8 (4), 468 (2018).
14. C. Pauzon, T. Mishurova, S. Evsevleev, S. Dubiez-Le Goff, S. Murugesan, G. Bruno, E. Hryha. Addit. Manuf. 47, 102340 (2021).
15. D. Barba, E. Alabort, R. C. Reed. Acta Biomater. 97, 637 (2019).
16. R. Cottam, S. Palanisamy, M. Avdeev, T. Jarvis, C. Henry, D. Cuiuri, L. Balogh, R. Abdul Rahman Rashid. Metals. 9, 60 (2019).
17. T. Ahmed, H. J. Rack. Mater. Sci. Eng. A. 243, 206 (1998).
18. D. Wang, H. Wang, X. Chen, Y. Liu, D. Lu, X. Liu, C. Han. Micromachines. 13, 331 (2022).
20. A. Timercan, P. Terriault, V. Brailovski. Mater. Des. 225, 111585 (2023).
21. P. K. Zysset, X. E. Guo, C. E. Hoffler, K. E. Moore, S. A. Goldstein. J. Biomech. 32, 1005 (1999).
22. L. Zhang, B. Song, S.-K. Choi, Y. Shi. Int. J. Mech. Sci. 197, 106331 (2021).
23. K. Nelson, C. N. Kelly, K. Gall. Mater. Sci. Eng. B. 286, 116013 (2022).
24. V. S. Sufiiarov, A. V. Orlov, E. V. Borisov, V. V. Sokolova, M. O. Chukovenkova, A. V. Soklakov, D. S. Mikhaluk, A. A. Popovich. Lett. Mater. 10 (2), 123 (2020). (in Russian) [В. Ш. Суфияров, А. В. Орлов, Е. В. Борисов, В. В. Соколова, М. О. Чуковенкова, А. В. Соклаков, Д. С. Михалюк, А. А. Попович. Письма о материалах. 10, 123 (2020).].
25. N. Soro, L. Brassart, Y. Chen, M. Veidt, H. Attar, M. S. Dargusch. Mater. Sci. Eng. A. 725, 43 (2018).
26. D. Khrapov, M. Kozadayeva, K. Manabaev, A. Panin, W. Sjöström, A. Koptyug, T. Mishurova, S. Evsevleev, D. Meinel, G. Bruno, D. Cheneler, R. Surmenev, M. Surmeneva. Materials. 14, 4912 (2021).

Финансирование на английском языке

1. Russian Science Foundation - 23-69-10003