Effect of initial state on structuring, hardening and rollability of high-strength aluminum alloy 1965 in isothermal cryorolling

M.V. Markushev, M.A. Akhmetshin, V.V. Tereshkin, S.V. Krymskiy, E.V. Avtokratova, O.S. Sitdikov показать трудоустройства и электронную почту
Получена 29 сентября 2023; Принята 16 ноября 2023;
Эта работа написана на английском языке
Цитирование: M.V. Markushev, M.A. Akhmetshin, V.V. Tereshkin, S.V. Krymskiy, E.V. Avtokratova, O.S. Sitdikov. Effect of initial state on structuring, hardening and rollability of high-strength aluminum alloy 1965 in isothermal cryorolling. Письма о материалах. 2023. Т.13. №4s. С.475-480
BibTex   https://doi.org/10.22226/2410-3535-2023-4-475-480

Аннотация

Structural behavior and hardening of the high-strength aluminum alloy 1965 after isothermal rolling at the temperature of liquid nitrogen with reductions in the range of 30-70% was studied for two pre-quenched conditions - the homogenized ingot and further hot-forged billet. In spite of differences in the initial structure parameters, the structure transformations in both the alloy states under cryorolling were preferably associated with the formation and development of the dislocation-cellular structure of the matrix.X-ray diffraction analysis, transmission and scanning electron microscopy, and hardness testing were used to investigate the structure and strength changes in the commercial high-strength aluminum alloy 1965 due to isothermal rolling at liquid nitrogen temperature with reductions in the range of 30 – 70 %. The alloy behavior was studied for two pre-quenched conditions — the homogenized ingot and the further multidirectionally forged billet. The latter condition was characterized by 3 times finer grains, 1.4 times smaller size of excess phases and more homogeneous distribution of primary and secondary phases, resulting in 10 % increase in alloy hardness. The structural transformations in both alloy states during rolling were preferentially associated with the development of the dislocation-cellular structure of the matrix. The alloy behavior was controlled by the high densities of nanoscale coherent precipitates of transition metal aluminides, which prevented dislocation rearrangement. The highly work-hardened and slightly misoriented structure was imparted in the alloy conditions even after 70 % straining, resulting in more than 1.5 times the alloy strengthening with the hardness difference remaining the same as in the initial states. The nature of the structure-property effects found, including the higher rollability of the forged condition, was discussed.

Ссылки (31)

1. T. Shanmugasundaram, B. S. Murty, V. S. Sarma. Scr. Materialia. 54, 2013 (2006). Crossref
2. S. K. Panigrahi, R. Jayaganthan. Mat. Sci. Forum. 584 - 586, 734 (2008). Crossref
3. S. K. Panigrahi, R. Jayaganthan. Mater. Sci. Eng. A. 492, 300 (2008). Crossref
4. P. A. Khaimovich. Low Temp. Phys. 44, 349 (2018).
5. G. Wang, D. Song, Zh. Zhou, Y. Liu, N. Liang, Y. Wu, A. Ma, J. Jiang. J. Mater. Res. Technol. 15, 2419 (2021). Crossref
6. R. Pant, Sh. Singh, A. Joshi, K. Joshi, K. K. Saxena. Mater. Today Proc. 62, 3086 (2022). Crossref
7. M. Markushev, I. Valeev, A. Valeeva, R. Ilyasov, E. Avtokratova, S. Krymskiy, O. Sitdikov. Facta Univ., Ser.: Mech. Eng., online-first. Crossref
8. S. Krymskiy, O. Sitdikov, E. Avtokratova, M. Markushev. Trans. Nonfer. Met. Soc. China. 30, 14 (2020). Crossref
9. M. V. Markushev, I. S. Valeev, E. V. Avtokratova, R. R. Ilyasov, A. K. Valeeva, S. V. Krimsky, O. S. Sitdikov. Lett. Mater. 12 (4s), 409 (2022). Crossref
10. E. Ma. JOM. 58 (4), 49 (2006). Crossref
11. Y. Huang, P. B. Prangnell. Acta Mater. 56, 1619 (2008). Crossref
12. P. V. Liddicoat, X. Z. Liao, Y. Zhao, Y. Zhu, M. Y. Murashkin, E. J. Lavernia, R. Z. Valiev, S. P. Ringer. Nature Communication. 63, 1 (2010). Crossref
13. S. Zhang, X. Luo, G. Y. Zheng, N. Z. Zhai, Y. Q. Yang, P. T. Li. Mat. Sc. Eng. A. 832, 142482 (2022). Crossref
14. Y. T Zhu, R. Z Valiev. In: Comprehensive Structural Integrity, 2nd edn. (ed. by F. M. H. Aliabadi, W. Soboyejo). Amsterdam, Elsevier Science (2023) 4923 p. Crossref
15. T. Konkova, S. Mironov, A. Korznikov, S. L. Semiatin. Acta Mater. 58, 5262 (2010). Crossref
16. L. Mei, M. J. Yang, X. P. Chen, Q. Q. Jin, Y. Q. Wang, Y. M. Li. Mat. Sci. Eng. A. 867, 144716 (2023). Crossref
17. S. Krymskiy, D. Nikiforova, M. Murashkin, M Markushev. Perspective mater. 12, 387 (2011). (in Russian) [C. В. Крымский, Д. К. Никифорова, М. Ю. Мурашкин, М. В. Маркушев. Перспективные материалы. 12, 387 (2011).].
18. V. I. Elagin. Alloying of deformable aluminum alloys by transition metals, Moscow, Metallugiya (1975) 248 p. [В. И. Елагин. Легирование деформируемых алюминиевых сплавов переходными металлами. Москва, Металлургия (1975) 248 с.].
19. O. Sh. Sitdikov, E. V. Avtokratova, B. I. Atanov, M. V. Markushev. Inorg Mater. 58 (5), 544 (2022). Crossref
20. M. V. Markushev, E. V. Avtokratova, S. V. Krymskiy. O. S. Sitdikov. J. All. Comp. 743, 773 (2018). Crossref
21. J. Jiang, F. Jiang, H. Huang, M. Zhang, Zh. Tang, M. Tong. J. Alloy Comp. 858, 157655 (2021). Crossref
22. T. Kobayashi. Mat. Sci. Eng. A286, 333 (2000). Crossref
23. R. R. Mulyukov, R. M. Imayev, A. A. Nazarov, M. F. Imayev, V. M. Imayev. Superplasticity of Ultrafine Grained Alloys: Experiment, Theory, Technologies, Moscow, Nauka (2014) 284 p. (in Russian) [Р. Р. Мулюков, Р. М. Имаев, А. А. Назаров, М. Ф. Имаев, В. М. Имаев. Сверхпластичность ультрамелкозернистых сплавов: эксперимент, теория, технологии. Москва, Наука (2014) 284 с.].
24. M. Kh. Rabinovich, M. V. Markushev. J. Mater. Sci. 31 (18), 4997 (1996).
25. M. V. Markushev. Deformation and Fracture of Materials. 12, 26 (2007). (in Russian) [М. В. Маркушев. Деформация и разрушение материалов. 12, 26 (2007).].
26. G. Yoganjaneyulu, K. Anand Babu, S. Vigneshwaran, C. Sathiya Narayanan. Materials Letters. 255, 126606 (2019). Crossref
27. M. V. Markushev. Voprosy materialovedeniya. 52 (4), 217 (2007). (in Russian) [М. В. Маркушев. Вопросы материаловедения. 52 (4), 217 (2007).].
28. P. Abachi, P. S. Z. Naseri, K. Purazrang. T. W. Coyle. Fracture Mechanics. London, IntechOpen Limited (2016) 332 p. Crossref
29. E. Avtokratova, O. Sitdikov, O. Mukhametdinova, M. Markushev, S. V. S. Narayana Murty, M. J. N. V. Prasad, B. P. Kashyap. J. Alloy Comp. 673, 182 (2016). Crossref
30. Y. Watanabe, M. Mihara-Narita, H. Sato. Mater. Trans. 64 (6), 1083 (2023). Crossref
31. M. V. Markushev, I. S. Valeev, E. V. Avtokratova, R. R. Ilyasov, A. K. Valeeva, S. V. Krimsky, O. S. Sitdikov. Lett. Mater. 13 (2), 126 (2023). Crossref

Другие статьи на эту тему

Финансирование на английском языке

1. Russian Science Foundation - 23-19-00702