Influence of multi-directional isothermal forging on the microstructure and mechanical properties of low activation ferritic-martensitic steel for nuclear reactors

V.V. Osipova ORCID logo , N.A. Polekhina, I.Y. Litovchenko, K.V. Spiridonova, V.M. Chernov, M.V. Leontieva-Smirnova показать трудоустройства и электронную почту
Получена 01 сентября 2023; Принята 15 октября 2023;
Эта работа написана на английском языке
Цитирование: V.V. Osipova, N.A. Polekhina, I.Y. Litovchenko, K.V. Spiridonova, V.M. Chernov, M.V. Leontieva-Smirnova. Influence of multi-directional isothermal forging on the microstructure and mechanical properties of low activation ferritic-martensitic steel for nuclear reactors. Письма о материалах. 2023. Т.13. №4s. С.403-407
BibTex   https://doi.org/10.22226/2410-3535-2023-4-403-407

Аннотация

The effect of multi-directional isothermal forging on the microstructure and mechanical properties of ferritic-martensitic steel EK-181 was studied. As a result, a submicrocrystalline fragmented structure with fine M23C6 particles was formed, which provides an increase in strength properties.The microstructure of low activation 12 % chromium ferritic-martensitic steel EK-181 (Fe‐12Cr‐2W‐V‐Ta‐B) formed by multi-directional isothermal forging is studied. It is shown that the refinement of microstructural elements is followed by the formation of new ferrite grains and fragments of martensitic laths. The resulting finely dispersed particles of M23C6 carbides are homogeneously distributed. The mechanical properties under tensile test conditions and microhardness of steel EK-181 are studied. It is shown that multi-directional isothermal forging increases the strength properties by 30 % at 20°C. At 650°C the strength properties of steel after multi-directional forging are comparable to those after traditional heat treatment. The microhardness of steel after thermomechanical treatment reaches 3.42 GPa, which is almost 20 % higher than after traditional heat treatment. The microhardness values over the cross section of the workpiece do not change significantly. A high-temperature tempering at 720°С for 1 hour after multi-directional isothermal forging leads to the formation of a submicrocrystalline ferrite structure, the growth of M23C6 carbides, reduction of dislocation density and decreases the strength properties.

Ссылки (24)

1. R. L. Klueh, A. T. Nelson. J. Nucl. Mater. 371 (1-3), 37 (2007). Crossref
2. X. Jin, Sh. Chen, L. Rong. Mater. Sci. Eng. A. 712, 97 (2018). Crossref
3. Z. Xu, Y. Shen, Z. Shang, C. Zhang, X. Huang. J. Nucl. Mater. 509, 355 (2018). Crossref
4. J. Vivas, D. De-Castro, E. Altstadt, M. Houska, D. San-Martín, C. Capdevila. Mater. Sci. Eng. A. 793, 139799 (2020). Crossref
5. N. Baluc, S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, G. R. Odette, B. van der Schaaf, J. Yu. J. Nucl. Mater. 367 - 370, 33 (2007). Crossref
6. P. Fernandez, J. Hoffmann, M. Rieth, A. Gomez-Herrero. Mat. Charact. 180, 111443 (2021). Crossref
7. A. Puype, L. Malerba, N. De Wispelaere, R. Petrov, J. Sietsma. J. Nucl. Mater. 494, 1 (2017). Crossref
8. H. He, H. Wang, K. He, X. Liang, X. Huang. Mater. Sci. Eng. A. 800, 7 (2021). Crossref
9. Ch. Mao, Ch. Liu, L. Yu, H. Li, Y. Liu. Mater. Sci. Eng. A. 725, 16 (2018). Crossref
10. L. Tan, Y. Yang, J. T. Busby. J. Nucl. Mater. 442 (1-3), 513 (2013). Crossref
11. N. Polekhina, V. Linnik, I. Litovchenko, K. Almaeva, S. Akkuzin, E. Moskvichev, V. Chernov, M. Leontyeva‐Smirnova, N. Degtyarev, K. Moroz. Met. 12, 1928 (2022). Crossref
12. Sh. Li, Z. Eliniyaz, F. Sun, Y. Shen, L. Zhang, A. Shan. Mater. Sci. Eng. A. 559, 882 (2013). Crossref
13. P. Prakash, J. Vanaja, N. Srinivasan, P. Parameswaran, G. V. S. Nageswara Rao, K. Laha. Mater. Sci. Eng. A. 724, 171 (2018). Crossref
14. I. Litovchenko, K. Almaeva, N. Polekhina, S. Akkuzin, V. Linnik, E. Moskvichev, V. Chernov, M. Leontyeva-Smirnova. Met. 12, 79 (2022). Crossref
15. A. Dolzhenko, A. Pydrin, S. Gaidar, R. Kaibyshev, A. Belyakov. Metals. 12, 48 (2021). Crossref
16. A. Dolzhenko, R. Kaibyshev, A. Belyakov. Metals. 10, 1566 (2020). Crossref
17. Y. Kimura, T. Inoue. ISIJ Int. 60, 1108 (2020). Crossref
18. M. Odnobokova, A. Kipelova, A. Belyakov, R. Kaibyshev. IOP Conf. Ser.: Mater. Sci. Eng. 63, 012060 (2014). Crossref
19. H. Jiang, Y. Liu, Y. Wu, K. Zhao, D. Shan, Y. Zong. J. Mater. Eng. Perform. 28, 3505 (2019). Crossref
20. A. Kim, S. Akkuzin, I. Litovchenko, N. Polekhina, D. Kushnereva. Russ. Phis. J. 66, 398 (2023). Crossref
21. Y. Nakao, H. Miura. Mater. Sci. Eng. A. 528 (3), 1310 (2011). Crossref
22. X. Liu, L. Xiao, C. Wei, X. Xu, M. Luo, W. Yan. Tribol Int. 119, 608 (2018). Crossref
23. X. Chen, B. Wu, J. Li, X. Zhang, P. Zuo, X. Wu, J. Li. Met. 12, 1175 (2022). Crossref
24. V. Linnik, N. Polekhina, I. Litovchenko, K. Spiridonova, V. Chernov, М. Leontyeva-Smirnova. Russ. Phis. J. 66, 404 (2023). Crossref

Другие статьи на эту тему

Финансирование на английском языке

1. Government Research Assignment for the Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS) - FWRW-2021-0008