Influence of temperature range on NiTi SMA actuator performance during thermal cycling

Получена 21 апреля 2023; Принята 04 июня 2023;
Эта работа написана на английском языке
Цитирование: A.V. Sibirev, N.N. Resnina, S.P. Belyaev. Influence of temperature range on NiTi SMA actuator performance during thermal cycling. Письма о материалах. 2023. Т.13. №3. С.249-254
BibTex   https://doi.org/10.22226/2410-3535-2023-3-249-254

Аннотация

Searching for the optimal  thermal cycling temperature range of the NiTi alloys, which would provide the most stable actuator performance.The aim of the study was to find the temperature range of thermal cycling of the NiTi alloys, which would provide the most stable actuator performance. The pre-deformed NiTi samples were subjected to thermal cycling in various temperature ranges with different relevant positions of the maximum (Tmax) and minimum (Tmin) cycle temperatures compared to the finish temperatures of the reverse (Af) and forward (Mf) transformations. It was shown that the closer the Tmax value to the Af temperature and the further the Tmin value from the Mf temperature, the better the stability of the recoverable strain, recovery stress and work output and the less the irrecoverable strain accumulation during thermal cycling. However, if Tmax value exceeded the Af temperature, then the stability of the parameters was worse and the irreversible strain increased more intensive. Thus, the optimal temperature range with Tmax = 410 K and Tmin = 324 K was found where the smallest accumulation of irreversible strain and the smallest decrease in work output were observed during thermal cycling. It was discussed how the position of the Tmax and Tmin temperatures compared to the transformation temperatures affected the dislocation density variation during thermal cycling.

Ссылки (37)

1. J. Mohd Jani, M. Leary, A. Subic, M. A. Gibson. Mater. Des. 56, 1078 (2014). Crossref
2. A. V. Sibirev, M. V. Alchibaev, I. A. Palani, S. Jayachandran, A. Sahu, S. P. Belyaev, N. N. Resnina. IOP Conf. Ser. Mater. Sci. Eng. 1213, 012001 (2022). Crossref
3. A. Sibirev, S. Belyaev, N. Resnina. Sensors Actuators A Phys. 319, 112568 (2021). Crossref
4. K. Safaei, M. Nematollahi, P. Bayati, H. Dabbaghi, O. Benafan, M. Elahinia. Eng. Struct. 226, 111383 (2021). Crossref
5. A. Lesota, A. Sibirev, V. Rubanik, N. Resnina, S. Belyaev, V. Rubanik, N. Resnina, S. Belyaev. Sensors Actuators A Phys. 286, 1 (2019). Crossref
6. Q. Liu, S. Ghodrat, K. M. B. Jansen. Mater. Des. 216, 110571 (2022). Crossref
7. S. Sukumaran, S. Chatbouri, G. Muslum, D. Rouxel, T. Ben Zineb. Chapter 9 - Hybrid composites with shape memory alloys and piezoelectric thin layers. In: Engineered Polymer Nanocomposites for Energy Harvesting Applications (ed. by M. T. Rahul, N. Kalarikkal, S. Thomas, B. Ameduri, D. Rouxel, R. Balakrishnan). Elsevier (2022) pp. 225 - 265. Crossref
8. D. Narayane, R. V. Taiwade, K. Sahu. Mater. Manuf. Process. 38, 245 (2023). Crossref
9. A. V. Sibirev, M. V. Alchibaev, S. P. Belyaev, N. N. Resnina, I. A. Palani, S. Jayachandran, A. Sahu. Lett. Mater. 13 (1), 62 (2023). Crossref
10. C. Jia, X. Wang, M. Hu, Y. Su, S. Li, X. Gai, L. Sheng. Coatings. 12, 840 (2022). Crossref
11. H. Shen, Q. Zhang, Y. Yang, Y. Ren, Y. Guo, Y. Yang, Z. Li, Z. Xiong, X. Kong, Z. Zhang, F. Guo, L. Cui, S. Hao, J. Mater. Sci. Technol. 116, 246 (2022). https://doi.org/. Crossref
12. R. Britz, P. Motzki. Sensors Actuators A Phys. 333, 113233 (2022). Crossref
13. E. S. Ostropiko, A. I. Razov. Cybern. Phys. 7, 216 (2018). Crossref
14. A. V. Sibirev, S. P. Belyaev, N. N. Resnina. Lett. Mater. 11 (2), 209 (2021). Crossref
15. H. Stroud, D. Hartl. Smart Mater. Struct. 29, 113001 (2020). Crossref
16. D. K. Soother, J. Daudpoto, B. S. Chowdhry. Mater. Res. Express. 7, 073001 (2020). Crossref
17. S. Belyaev, V. Rubanik, N. Resnina, V. Rubanik, A. Sibirev, A. Lesota. Mater. Lett. 214, 162 (2018). Crossref
18. S. Ameduri, A. Concilio. J. Intell. Mater. Syst. Struct. 30, 2605 (2019). Crossref
19. A. Sibirev, N. Resnina, A. Volkov, S. Belyaev. Mater. Today Proc. 4 (3), 4743 (2017). Crossref
20. Y. Furuya, Y. C. Park. Nondestr. Test. Eval. 8 - 9, 541 (1992). Crossref
21. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner. Mater. Sci. Eng. A. 378, 24 (2004). Crossref
22. S. Belyaev, N. Resnina, A. Sibirev. J. Alloys Compd. 542, 37 (2012). Crossref
23. S. Belyaev, N. Resnina, A. Sibirev. J. Mater. Eng. Perform. 23, 2339 (2014). Crossref
24. H. Sehitoglu, Y. Wu, L. Patriarca. Scr. Mater. 129, 11 (2017). Crossref
25. B. Kockar, K. C. Atli, J. Ma, M. Haouaoui, I. Karaman, M. Nagasako, R. Kainuma. Acta Mater. 58, 6411 (2010). Crossref
26. K. C. Atli, I. Karaman, R. D. Noebe, H. J. Maier. Scr. Mater. 64, 315 (2010). Crossref
27. B. Kockar, I. Karaman, J. I. Kim, Y. I. Chumlyakov, J. Sharp, C. J. (Mike)Yu. Acta Mater. 56, 3630 (2008). Crossref
28. K. Tsuchiya, M. Inuzuka, D. Tomus, A. Hosokawa, H. Nakayama, K. Morii, Y. Todaka, M. Umemoto. Mater. Sci. Eng. A. 438 - 440, 643 (2006). Crossref
29. S. P. Belyaev, N. N. Resnina, A. E. Volkov. Mater. Sci. Eng. A. 438 - 440, 627 (2006). Crossref
30. T. Tadaki, Y. Nakata, K. Shimizu. Trans. Japan Inst. Met. 28, 883 (1987). Available online http://www.jim.or.jp/journal/e/pdf3/28/11/883.pdf.
31. K. Gall, H. Maier. Acta Mater. 50, 4643 (2002). Crossref
32. X. Wang, C. Li, B. Verlinden, J. Van Humbeeck. Scr. Mater. 69, 545 (2013). Crossref
33. C.-H. Li, L.-J. Chiang, Y.-F. Hsu, W.-H. Wang. Mater. Trans. 49, 2136 (2008). Crossref
34. A. Sibirev, S. Belyaev, N. Resnina. J. Alloys Compd. 661, 155 (2016). Crossref
35. S. Padula, S. Qiu, D. Gaydosh, R. Noebe, G. Bigelow, A. Garg, R. Vaidyanathan. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 4610 (2012). Crossref
36. K. C. Atli, I. Karaman, R. D. Noebe, D. Gaydosh. Mater. Sci. Eng. A. 560, 653 (2013). Crossref
37. S. Belyaev, N. Resnina, A. Sibirev, I. Lomakin. Thermochim. Acta. 582, 46 (2014). Crossref

Финансирование на английском языке

1. Russian Science Foundation - 22-29-20021
2. St. Petersburg Science Foundation - № 40 «14» april 2022